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This paper o!ers a survey of simple, #exible structural elements subjected to
non-conservative follower loads, such as those caused by the thrust of rocket- and jet
engines, and by dry friction in automotive disk- and drum-brake systems. Emphasis is on the
&&canonical problems'', Beck's, Reut's, Leipholz's, and Hauger's columns. Beck's and Reut's
columns have been realized experimentally, and very good agreement between theory and
experiments has been found. Leipholz's column is basically realized in an automobile brake
system, where noise due to dynamic or parametric instability (brake squeal) is a well-known
environmental problem. It is attempted to give a broad overview, with emphasis on
experimental works and the associated theoretical problems. Structural optimization is also
included in the review, as many studies in that area have served an important purpose in the
development of optimization techniques for practical, large-scale optimization problems
with non-conservative forces, such as in aeroelasticity.
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1. INTRODUCTION

1.1. MODELS CONSIDERED IN THIS PAPER

This paper surveys simple structural elements under non-conservative &&follower'' loads,
such as those caused by rocket- and jet engines, and by dry friction in automotive disk- and
drum-brake systems. Emphasis is on the so-called Beck's, Reut's, Leipholz's, and Hauger's
columns, and their generalizations.

Beck's column is a cantilever subjected to a tangential follower load at the free end. Reut's
column is compressed by a force with a "xed line of action (the undeformed beam axis), acting
on a completely rigid cross-beam, attached at the free end of the cantilever. Leipholz's column
has a uniformly distributed follower loading along its span, while Hauger's column has
a linearly (towards the clamped end) increasing distributed follower load. Follower force
loaded free}free beams and plates are also included in the survey. They are typically used as
simple models of missiles, rockets and space structures, such as solar panels.

One of the most easily realized follower force systems is a cantilevered pipe conveying
#uid. A very comprehensive review of #uid-conveying pipes has been given by PamKdoussis
022-460X/00/500809#43 $35.00/0 ( 2000 Academic Press
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and Li [1] and the subject has been treated in more detail by PamKdoussis [2].
Fluid-conveying pipes will therefore not be considered here.

Studies within the subject of the present survey have from time to time been criticized as
being purely theoretical and having no relevance to practical engineering problems [3, 4].
Some recent papers have attempted to justify and explain the basic ideas [5, 6], and it is also
one of the main purposes of this paper.

Admittedly, many published papers on problems with follower forces do have a strong
theoretical and mathematical bias. Often, the underlying physical problem (if any) has been
oversimpli"ed [7]. But still, many of these studies are very interesting from a general theory
of dynamic stability point of view, and studies of simple follower force systems help to obtain
a deeper understanding of much more complex practical/industrial stability problems.

The mechanical systems reviewed here may be said to be the simplest #utter-prone
continuous structures. Beck's column [8], and the related systems, have received so much
research attention because of their interesting dynamic behavior. The governing equations
for #utter of aircraft wings, cantilevered #uid-conveying pipes, and cantilevered
columns subject to a rocket thrust, have the same mathematical form. Of course, the simple
Beck's column cannot completely &&capture'' the very complex problem of aircraft #utter.
But if the focus is on the passage through the stability boundary, and on the energy balance
between dissipative and circulatory forces, then much can be learned from studies of simple
systems. Bishop and Fawzy [9] studied the dynamics of a cantilevered #uid-conveying tube
and wrote:
&&The studies reported in this paper were conceived as a possible means of investigating

a technical problem of extreme importance, namely the #utter of aircraft. It is not suggested,
of course, that a vertical tube conveying a liquid bears much resemblance to an aircraft in
#ight, but such similarities as there are, are perhaps worthy of some thought. To study the
phenomena that are normally associated with #utter and #ight #utter testing, and to which
simple #utter calculations apply, it would evidently be helpful to consider a much simpler
system than an aircraft.''

This point of view also applies to the mechanical systems reviewed in the present paper.
But #utter of Beck's column may be more related to #utter of aircraft than #utter of
a cantilevered #uid-conveying tube, since Beck's column and aircraft are not subject to such
heavy #uid damping as the #uid-conveying tube is.

Several reviews of problems involving follower forces have been published. Herrmann
wrote general reviews in 1967 [10] and in 1971 [3]. Sugiyama and Sekiya [11] reviewed the
experimental works with follower forces in 1971. Another general review was given by
Sundararajan [12] in 1975. Weisshaar and Plaut [13] reviewed optimum design of
structures subjected to follower loads in 1981. Seyranian [14] gave a comprehensive review
of studies into the e!ects of damping in 1990, addressing especially the possible destabilizing
e!ect. Recently, Bolotin [6] gave a retrospective on the important developments in dynamic
stability theory.

A very interesting review on &&real'' aircraft #utter was published by Garrick and Reed
[15]. That paper describes practical problems with #utter, from the Wright Brothers to
supersonic aircraft, and the means of curing the problems, with the aid of computations and
model testing.

Several books dealing with follower force loaded structures have been published, and
some include comprehensive reviews up to the year of publication. Among the most popular
are those by Bolotin [16], Panovko and Gubanova [17], Ziegler [18], Huseyin [19],
Leipholz [20], El Naschie [21], and Bazant and Cedolin [22]. Gajewski and Zyczkowski
[23] wrote a book dealing with optimization of structures subjected to stability constraints,
which also includes a comprehensive review and publication list on the subject.
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1.2. STRUCTURE OF THE PAPER

This is not a concise catalogue of work within the area. However, an attempt is made to
give a broad overview. Emphasis is on recent developments, but early, pioneering papers
are also included. Experimental works are particularly emphasized. Another area which is
emphasized is structural optimization.

Section 2 is concerned with linear stability analysis. Sections 2.1}2.4 review the equations
for linear dynamic stability of generalized Beck's, Reut's, Leipholz's, and Hauger's columns.
Stability analysis is discussed in sections 2.5}2.7. Sections 2.8}2.11 discuss the e!ects of
damping, boundary conditions and load distribution. Section 2.12 gives a discussion of the
energetics at the stability limit.

Section 3 reviews experimental works. Section 3.1 is concerned with Reut's column, while
Beck's column is the subject of section 3.2.

Section 4 is concerned with optimum design of columns subjected to follower loads.
Section 5 deals with parametric instability, section 6 with non-linear dynamics, and section
7 with plates under follower loading. Section 8 discusses "nite load increase (contrary to
a quasistatic increase). Finally, some conclusions are made in section 9.

2. BASIC LINEAR DYNAMICS AND STABILITY

2.1. BECK'S COLUMN IN GENERALIZED FORM

A generalized form of Beck's column, with an end-mass of "nite size, was introduced by
Wood et al. [24] (see Figure 1). Here we consider a (possibly) non-uniform, standing column
of viscoelastic material, vibrating in a viscous medium. The equation of motion is
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Here y"y(x, t) is the transverse displacement at position x, t is the time, m"m(x) is the
mass per unit length, p is the mean thrust, EI"EI(x) is the #exural rigidity of the column (E
is the modulus of elasticity and I is the area moment of inertia), E* is the coe$cient of
dynamic visco-elastic resistance [25, 26], M is the endmass, J is the corresponding rotatory
inertia, g is the gravity acceleration, and C is the coe$cient of external viscous damping.
This coe$cient is proportional to the width (or diameter) of the column [27]. If the column
is clamped at x"0 and free at x"¸, the boundary conditions are
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where a is the distace from the column end to the center of gravity of the end-mass.



Figure 1. Generalized, standing Beck's column. The non-conservative follower force, of magnitude p, may be
generated by the thrust of a solid-propellant rocket motor [36, 56, 57], or by a water jet issued from a nozzle box
[24] (see section 3, and Figures 10, 12, 13 and 15). The rocket motor (or nozzle box) has mass M and rotatory
inertia J. The column is of length ¸, and it has sti!ness EI, cross-section area A and density o. The distance from
the column end to the center of gravity of the rocket motor (or nozzle box) is denoted by a.
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2.2. LEIPHOLZ'S AND HAUGER'S COLUMNS

The cantilevered column with a uniformly distributed follower force p@ (force per unit
length) is usually referred to as Leipholz's column. Hauger's column has a self-weight-like
force distribution, which varies linearly from 0 at the top to p@ at the clamping. The
equations of motion are obtained by replacing p L2y/Lx2 with p@Q(x) L2y/Lx2 in equation (1)
where Q(x) is a force distribution function, which is

Q"¸P
1

x@L

1 dmM "¸!x (3)

for Leipholz's column [28] and

Q"¸P
1

x@L

(1!mM ) dmM "
¸

2
(1!x/¸)2 (4)

for Hauger's column [29].
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The uniformly distributed follower forces have their origin in several engineering
problems. One example is the friction forces on the wall of a tube caused by a creeping (very
slow) #ow of a highly viscous #uid [30]. The Reynolds number

Re"
inertia forces

viscous forces
(5)

is thus very small.
Another example is the friction forces acting on slender cylinders in axial #ow, including
#ying rockets and missiles [31, 32].

A third example is automotive disc- and drum-brake systems. Kang and Tan [33]
showed that the equation of motion governing the vibrations of a disk brake pad under the
action of a rotating brake disk is identical with the equation of motion for Leipholz's
column. The onset of brake &&squeal'' is thus caused by a #utter instability, or by
a parametric instability (see section 5).

Engineering problems which similarly reduce to Hauger's column have yet to be
reported. But with a view to reference [33], it might be related to a non-perfect automotive
brake system, where the tread of the brake pad on the disc is not uniform (due to oil, wear, etc.).

2.3. BOUNDARY VALUE PROBLEM

By inserting a displacement of the form

y(x, t)"yJ (x) exp(jt), j"a#iu (i"J!1) (6)

and introducing the non-dimensional variables
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equations (1) and (2) are converted into the following non-dimensional boundary value
problem:

B[y]"M(1#jp)syANA#AcP
1

x

m(m) dm#pB yA!cmy@#j (b#jm)y"0,

y"0 and y@"0 at x"0,
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M(1#jp)syAN@#Mp(1!g)!j2akNy@!j2ky"0 at x"1, (8)
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where in the di!erential operator B[ ] has been de"ned. All &&overbars'' have again been
dropped, for the sake of simple notation.

It is noted that g"0 corresponds to a pure conservative end-loading and g"1 to a pure
tangential non-conservative end-loading. A value 0(g(1 is often called a partial, or
sub-tangential follower load, and the parameter g is often called the non-conservativeness
parameter.

A partial, distributed follower load may also be obtained, for example, due to the
combined action of viscous #uid forces in a pipe and self-weight (i.e., gravity forces). This has
been studied by Sugiyama and Kawagoe [34], and by Sugiyama and Mladenov [30] (see
also section 2.9).

2.4. REUT'S COLUMN IN GENERALIZED FORM

This column is sketched in Figure 2 with a "nite-size end-mass included. It has exactly the
same stability limit as the generalized Beck's column, since the boundary value problem
describing small vibrations of this column is adjoint to equation (8). It is obtained from the
identity

P
1

0

[vB[y]!yR[v]] dx"0. (9)
Figure 2. Generalized, standing Reut's column. The non-conservative follower force p may be generated by an
air jet, impinging onto an almost rigid crossbeam [102}104] (see Section 3, and Figure 9). In order to obtain the
situation shown, the crossbeam must be covered with a &&non-re#ecting'', coarse material. The symbols are similar
to those used and de"ned in Figure 1.
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This equation is satis"ed if
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2.5. SEMI-ANALYTICAL SOLUTION OF THE BOUNDARY VALUE PROBLEM

It is possible to obtain a semi-analytical solution to the boundary value problem for the
generalized Beck's/Reut's column with uniform mass and sti!ness distributions, m(x),1
and s(x),1 respectively. Considering Beck's column, a solution of the form

y(x)"k exp(fx) (11)

satis"es equation (8). Inserting this expression into the di!erential equation gives a fourth
order polynomial in f. After having determined the four roots f

1
, f

2
, f

3
and f

4
, the general

solution to the fourth order ordinary di!erential equation (8) can be written as

y(x)"
4
+
n/1

k
n
exp(f

n
x). (12)

Inserting expression (12) into the boundary conditions in equations (8) gives a matrix
equation system of the form

Bk"0, (13)

where B is a 4]4 matrix, where the coe$cients are functions of the non-dimensional
parameters (7) and k is a column vector. A non-trivial solution requires that

detB"0. (14)

This gives a transcendent equation from which the eigenvalues j can be obtained by using
an iterative method [8, 35, 36]. Pedersen [35] obtained an elegant formulation of equation
(14) by expressing the solution (12) in terms of simple and hyperbolic cosine and sine
functions, rather than in exponentials, and by introducing some auxiliary, complex
functions. Morgan and Sinha [37] used this formulation to obtain a semi-analytical
solution for Beck's column on a continuous viscoelastic foundation (see also section 2.8).

By using the method of transfer matrices, a semi-analytical solution can in fact also be
found if the cross-sections have just piecewise constant thickness [38]. Distributed elastic
supports may also be included.

2.6. DISCRETIZATION

If the column has non-uniform sections, or if the load is distributed, a discretization
method must be applied. (However, semianalytical methods have been proposed; see, e.g.,
reference [39].)

Prasad and Herrmann [40, 41] and Anderson [42] have studied the usefulness of the
adjoint system (10) when determining eigensolutions to (8), and vice versa. By using
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equations (8) and (10), one can obtain the functional
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which is stationary with respect to variations dy, dv just satisfying the kinematic boundary
conditions y(0)"0 and y@(0)"0 (and v(0)"0, v@(0)"0). This functional is a sound basis for
the discretization. With any discretization method, the discretized equation of motion takes
the form

Ly"[j2M#jC#K#pQ]y"0, (16)

where M is the mass matrix, C is the damping matrix, K is the sti!ness matrix, and Q is the
load matrix. L is termed the system matrix. M is obtained from the "rst square bracket in
equation (15), C is obtained from the second, K is obtained from the third, and lastly, Q is
obtained from the fourth square bracket in equation (15). Thus, the matrices M, C and K are
symmetric, while Q is non-symmetric.

The discretized adjoint system has the form

LTv"[j2M#jC#K#pQ]Tv"0. (17)

Properties of, and techniques for, non-symmetric matrices, with emphasis on
non-conservative vibratory systems, have been studied by Lancaster [43], and by Fawzy
and Bishop [44]. One of the most important results in reference [44] is the biorthogonality
condition for the eigensolutions (jy, y) and (jv, v). They are orthogonal in the following way:

vT[(jy#jv)M#C]y"0. (18)

It may be noted that the biorthogonality condition for the continuous eigensolutions
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In order to determine the eigenvalues, equation (16) is normally rewritten as
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0 I

!pQ!K !C D!j C
I 0

0 M DB G
y

jyH"0. (20)

This equation can then be transformed into a standard linear eigenvalue problem,

Aq"jq, (21)
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where

A"C
0 I

!M~1(pQ#K) !M~1C D and q"G
y

jyH . (22)

Prasad and Herrmann [41] discussed the Galerkin method and the method of least squares.
Leipholz [20] gave a very thorough discussion of the Galerkin method, including the
question of convergence. Application of the ,nite element method to eigenvalue analysis for
Beck's column was published almost simultaneously by Mote Jr [45] and Barsoum [46].

2.7. STABILITY CRITERIA

One of the most used de"nitions of stability is Lyapunov's de"nition; see, e.g., references
[16, 47]. For small periodic vibrations (with frequency u) about equilibrium of beams,
a solution has form (6). Application of Lyapunov's stability de"nition gives that the
vibrations are stable if all a)0, asymptotically stable if all a(0, and unstable if at least
one a'0. The instability is termed divergence if u"0 for the unstable eigenvalue(s), and
#utter if uO0.

Figure 3 shows the stability boundaries for the generalized Beck's column, as a function
of the non-conservativeness parameter g, for di!erent damping parameters. Divergence
occurs for g(0)5 and #utter for g'0)5. For the model without damping, there is an
isolated divergence load at g"0)5. Increasing the load beyond this value results in
restabilization and then #utter. If small internal damping is included, divergence and #utter
coincide at g"0)5. It is worth noticing that the stability map for the cantilever with
a partial, distributed follower force is very similar [30, 34]. Also here, the divergence-#utter
transition takes place at g"0)5.

Eigenvalue analysis of large, non-symmetric matrices can be very time consuming. Much
work has been done on methods which give just a few eigenvalues with largest real parts a,
Figure 3. Stability map, depicting the critical load as a function of the non-conservativeness parameter g, for
a cantilevered column loaded by a partial follower force, with various values of internal damping p and external
damping b.
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sometimes called the leading eigenvalues [48}51]. But still, a method which is both robust
and simple has not yet appeared. Ringertz [52] used a matrix formulation of Lyapunov's
stability criterion, which eliminates the need for direct eigenvalue analysis. The criterion
says that if all eigenvalues j in the matrix A (equation (22)) have negative real parts, then
there exists a symmetric, positive de"nite matrix P such that the matrix

[ATP#PA] (23)

is negative de"nite. In reference [52] the condition for dynamic stability is then posed as
follows. Let R be any positive-de"nite matrix (for example the unit matrix I). All eigenvalues
of A then have negative real parts, and the vibrations are stable, if the matrix P obtained
from the Riccati equation

ATP#PA#R"0 (24)

is positive de"nite.s
Lyapunov's stability de"nition considers stability in an in"nite interval of time. For

practical applications, this may be too restrictive for systems with little damping, when the
load is applied only in a short interval of time. This is related to the famous problem of the
destabilizing e!ect of damping, which is treated in greater detail in the next section. Here it
is su$cient to note that when both internal and external damping are small, the amplitude
growth rate exp(at) is very small in the load range p

cr,damped
(p(p

cr,undamped
, where

p
cr,damped

and p
cr,undamped

are the critical load values for the damped and the undamped
columns, respectively. So although the system mathematically may be unstable (in the sense
of Lyapunov) it may be considered as being stable for practical purposes. Herrmann and
Jong [54] proposed a relaxed stability criterion based on a measure of the rate of amplitude
growth during a period of oscillation. They de"ned the logarithmic increment as

d"log
A

n
A

n`1

, (25)

where A
n

is the amplitude of the oscillation at time t, and A
n`1

is the amplitude at time
t#¹, where ¹ is the period. Using the exponential time dependence in equation (6) simply
gives

d"!a¹"!2n
a
u

. (26)

Stable oscillations (in the sense of Lyapunov) exist if d*0, and asymptotically stable
oscillations if d'0. In practical applications, d may obtain a negative value within the
duration of the loading without appreciable loss of stability.

A more comprehensive, practical stability criterion was suggested by Herrmann [55].
Here a transition force p

T
is de"ned as the load where a would be &&relatively small'' for

p(p
T

and &&relatively large'' for p'p
T
. Herrmann suggests that the point where the p(a)

curve has maximum curvature would be the natural de"nition of p
T
.

These ideas have not been pursued further since their introduction, due to lack of
experimental work. But they appear to be extremely useful for experimental systems like
those of Sugiyama et al. [36, 56, 57] (see section 3), and ought to be followed up.
sA simple way of checking a symmetric matrix for positive de"niteness is to perform a Cholesky decomposition
(or attempt to * it is only possible when positive de"nite) [53].
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Sugiyama et al. [36] suggested a slightly di!erent criterion: the system is considered as
being stable if small disturbances are ampli"ed less than n times during the time interval
t
l
wherein the load acts. If a

max
is the largest a value, the system is then considered as being

stable if

exp(a
max

t
l
)(n. (27)

The critical load p
cr

is then de"ned as the load at which

a
max

"

ln(n)

t
l

. (28)

In conclusion to this section, the di!erent relaxed stability criteria ought to be carefully
compared and, if possible, uni"ed.

2.8. THE EFFECT OF DAMPING

The destabilizing e!ect of small damping in structures subject to non-conservative
loading is perhaps one of the most interesting problems in applied mechanics, and it has
been studied very thoroughly since its discovery by Ziegler in 1952 [58]. Ziegler considered
a two-degrees-of-freedom model (Ziegler's pendulum). Herrmann and Jong [54] showed
that small Sezawa internal damping [25] in a continuous cantilever (Beck's column) may
act destabilizing. Bolotin and Zhinzher [59] performed a very thorough parameter study of
the continuous cantilever subjected to the combined action of a follower end load, and
a dead (conservative) end load. Bolotin [60] gave a critical review of that work and
discussed other mechanical systems where damping may act destabilizing. Herrmann [3]
wrote a comprehensive review covering the works up till 1970.

Bolotin and Zhinzher [59] suggested a new terminology in dynamic stability, which is
illustrated by Figure 4, adapted from reference [59]. Figure 4(a) shows the behavior of the
eigenvalues near the stability boundary (or #utter boundary) when a moderate (not very
small) amount of internal, visco-elastic damping is present in the system. (Some external,
Figure 4. Argand diagrams for Beck's column with di!erent amounts of (internal) damping (from Bolotin and
Zhinzher [59]). (a) With a moderate amount of damping; (b) Without damping; (c) With very little damping. In (a),
the unstable eigenvalue crosses the imaginary axis at the critical load p

cr
. The vibrations are asymptotically stable

in the load interval 0(p(p
cr
. In (b), #utter is initiated at the &&quasi-critical'' load p8

cr
. The vibrations are just

&&quasi-stable'' in the load interval 0(p(p8
cr
. In (c), #utter is initiated at the critical load p

cr
, but in the load

interval p
cr
(p(p8

cr
the #utter is likely of the &&quiet'' type, while it is &&violent'' for p'p8

cr
.
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viscous damping may also be present.) The load value p
cr

is termed the critical load in
reference [59]. At the load level p

cr
, one or several simple eigenvalues obtain positive real

parts (a'0). [The curves have a mirror image in the lower half of the complex plane.]
Figure 4(b) shows the eigenvalue behavior near the #utter boundary for a completely

undamped system. Here the two (purely imaginary) eigenvalues coincide on the imaginary
axis at the critical load p8

cr
. For p'p8

cr
, one of the eigenvalues gets a positive real part

(a'0), and #utter is initiated. It emphasized that, basically, the vibrations are critical
(marginally stable) for all 0(p(p8

cr
. (At p"p8

cr
there are solutions proportional to

exp(iut) and to t exp(iut), and the amplitude will thus increase linearly in time at that point.)
Figure 4(c) is for the case with in"nitely small internal, visco-elastic damping (in"nitely

small external, viscous damping may also be present). Here the critical eigenvalue branch is
creeping along the imaginary axis and is crossing it at the critical value p

cr
. The

&&destabilization paradox'' is that (p
cr
)b,p?0

(see equation (7) for the de"nition of b and p) is
much less than p8

cr
, about half the value. It is worth noticing that the destabilizing e!ect of

small damping also is known in #uid dynamics. For example, a viscous parallel shear #ow
may be unstable, while the same inviscid #ow is stable [61].

Bolotin and Zhinzher's point of view was that, &&it would be more correct to speak not of
destabilization, but of false conclusions based on the interpretation of the critical case as the
stable one'' [59]. They suggested then that, for the undamped case, the load domain should
not be considered as &&stable'', but just as &&quasi-stable''. Furthermore, p8

cr
should not be

called the &&critical load'', but the &&quasi-critical load''. Also, they suggested that, in the light
of the possible destabilizing e!ect, it is essential to include damping in all stability
investigations, because small internal damping may make the quasi-stable domain unstable.
However, if both internal and external damping are very small, the #utter instability in the
(before) quasi-stable region may be a &&quiet'' #utter. In the instability region, the #utter is
&&violent''. Bolotin and Zhinzher emphasized that this hypothesis should be con"rmed by
the solution of the non-linear problem and by experiment.

The experimental veri"cation has now been given by Sugiyama et al. [36]. The key point
is that acceptance of &&quiet'' #utter is equivalent to relaxation of the Lyapunov stability
criteria. In reference [36], it was veri"ed by experiment that in

p
cr,damped

(p(p(a
max

), a
max

"ln(n)/t
l
'0 (29)

(see equations (27), (28)) the #utter is su$ciently &&quiet'' to be indistinguishable from the
stable state. To exemplify, for one of the experiments in reference [36], criterion (28) gives,
with n"10t, a non-dimensional critical load of magnitude 12)61. This value is not very
di!erent from the theoretical value p

cr,undamped
"12)60 obtained by neglecting damping, but

certainly very di!erent from the theoretical value p
cr,damped

"5)65 obtained by including
damping. Thus, when the time interval t

l
, where the load acts, is small, the destabilizing

e!ect of small damping may not be present in reality. On the other hand, if the load interval
t
l
is not such a short period, a

max
must necessarily be very small. As t

l
PR, p

cr
smoothly

approaches p
cr,damped

. Stability criterion (28) thus eliminates the &&destabilizing paradox''
present in Lyapunov's stability criteria.

Crandall [62] gave a very interesting account on the importance of damping in
engineering systems in general, including non-conservative follower force systems, and
destabilizing e!ects.
tThe choice of n, the number of oscillation cycles, is not important.



Figure 5. Di!erent viscoelastic foundations to Beck's column, as investigated by Morgan and Sinha [37]. (a)
Standard linear solid model, with e!ective mass M*, supported by an elastic spring with constant k

1
and a damper

with coe$cient c, in parallel with another elastic spring with constant k
2
; (b) the Kelvin}Voigt model; (c) the

Maxwell model.
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Morgan and Sinha [37] considered the e!ect of a viscoelastic foundation on the stability
of Beck's column. Three di!erent models were considered; (1) the Maxwell model, which is
a spring and a dashpot in series; (2) the Kelvin}Voigt model, which is a spring and a dashpot
in parallel; and (3) a &&standard linear solid model'', which is the Maxwell model coupled in
parallel with a spring. The models are shown in Figure 5. Smith and Herrmann [63] found
that a continuous, elastic (Winkler) foundation does not increase the critical load of Beck's
column; it only increases the #utter frequency. But the combination of continuously
distributed springs and dashpots in a Kelvin-Voigt foundation increases the critical load, as
seen from Figure 6(a). The Maxwell foundation may also have a stabilizing e!ect, as
illustrated by Figure 6(b). But this e!ect vanishes as the non-dimensional damping
coe$cient CPR, since the Maxwell foundation then approaches the Winkler foundation.
Naturally, the same e!ect is obtained by the combined &&standard linear solid model'', as
seen from Figures 6(c,d).

External damping has a stabilizing e!ect in many cases [64]. But Panovko and Sorokin
[65] argued that any kind of damping not proportional to m(x) Ly/Lt (see (equation (1))
may act destabilizing. To exemplify, they considered Beck's column with a single
dashpot}damper connected at the free end. It was found that the critical load p

cr
P10)94 as

the damping coe$cient CP0. This interesting example will be discussed further in the
following section on energy consideration. A destabilizing e!ect by &&rotary damping'' of
Beck's column has also been reported [66].

Panovko and Sorokin [65] also considered a relaxed stability criterion similar to that
used by Sugiyama et al. [36], as discussed in the previous section. So also did Higuchi and
Dowell [67] in a study of completely free plates, loaded with a uniformly distributed
follower load at one edge. They considered solutions of the form

y(x, z, t)"y8 (x, z) exp(iXt), X"R(X)#iF(X)"X
R
#iX

I
(30)

and de"ned the ratio

X
I
/X

R
(31)

as the true damping rate. This ratio contains qualitative information about an instability.
(Note that it is simply the logarithmic increment (26) of Herrmann and Jong, divided by 2p.)
Mathematically, the system is unstable if X

I
/X

R
(0 (assuming X

R
'0). But the smaller the

value, the faster will the amplitude of the unstable oscillations grow. In cases where



Figure 6. E!ects of di!erent viscoelastic foundations on the #utter load of Beck's column (from Morgan and
Sinha [37]). The constants K

1
, K

2
and C are non-dimensionalized versions of the constants speci"ed in Figure 5.

(a) The e!ect of a Kelvin}Voigt foundation on the #utter load; (b) The e!ect of a Maxwell foundation on the #utter
load. The numbers are values of K

1
, 0)K

1
)1250; (c, d) The e!ect of a standard linear solid foundation on the

#utter load.
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!X
I
/X

R
is larger than zero, but remains small, Higuchi and Dowell used the name weak

-utter (which is equivalent to Bolotin and Zhinzher's &&quiet #utter'' [59]). True stability
boundaries X

I
/X

R
"0 were compared with &&relaxed'' stability boundaries, de"ned by

!X
I
/X

R
"e, where e is a small, positive number. (e"0)001,0)01 and 0)1 were used.)

In rounding o! this section, we consider again the completely undamped system. As
mentioned in connection with Figure 4(b), two imaginary eigenvalues coincide at the #utter
load pJ

cr
. But the corresponding eigenvectors also coincide. Let us denote the two

eigensolutions by &&1'' and &&2''. Then, at the #utter load,

(j
1
, y

1
)P(j

f
, y

f
), (j

2
, y

2
)P(j

f
, y

f
). (32)

(Subscript &&f '' indicates &&#utter''.) Inserting this in the biorthogonality condition (19) (with
damping parameters p"b"0) gives the #utter criterion

P
1

0

my
f
v
f
dx#k[y

f
v
f
#a (y

f
v@
f
#y@

f
v
f
)#(J/k#a2)y@

f
v@
f
]
x/1

"0. (33)
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Equation (18) gives the discretized #utter criterion

vT
f
My

f
"0. (34)

2.9. THE INFLUENCE OF GEOMETRY AND VARIOUS BOUNDARY CONDITIONS

Sugiyama et al. [68] studied the e!ect of an elastic support (the clamping at x"0 is
changed for a link with a rotational spring), considering both Ziegler's
two-degrees-of-freedom model and the continuous Beck's column (without damping). For
the continuous model, divergence occurs for g(0)5 and #utter for g'0)5, as already
mentioned. When the spring sti!ness at x"0 is relaxed, the divergence}#utter transition
point moves from 0)5 to larger values, and approaches 1)0 when the sti!ness approaches 0.
Another interesting feature is that for g"1)0, the critical load has a minimum,
p
cr
+0)8]20)05, at the non-dimensional sti!ness value k

r
"K¸/EI"1)74, where K is the

spring sti!ness.
The same authors also studied the e!ect of a translational spring "tted at the free end

[69]. Also here, both Ziegler's two-degrees-of-freedom model and the continuous model
were investigated, but we will again concentrate on the continuous model. When the
non-dimensional sti!ness value k

t
"K¸3/EI (where K is again the spring sti!ness) has the

moderate value 20, the divergence &&nose'' moves from g"0)5 to 0)45, but the #utter
boundary line moves under the &&nose'', such that the shift between divergence and #utter
occurs already at g"0)191. (Compare with Figure 3.) By further increasing the value of k

t
,

the #utter boundary moves upwards again, and divergence becomes predominant. At
k
t
"35, the divergence}#utter transition point has moved to 1)03, and at k

t
"40,

divergence occurs at any value of g. For g"1)0, the optimum value of k
t
is 34)82, and this

value corresponds to a #utter}divergence transition point (#utter for smaller values and
divergence for larger values, of k

t
).

Kounadis [70] and Sato [71, 72] studied the e!ects of shear deformation and rotatory
inertia for Beck's column with elastic spring supports and concentrated masses. These
e!ects have also been studied for Leipholz's column [73].

Ryu and Sugiyama [74] studied the e!ects of shear deformation and rotatory inertia for
Beck's column with an end mass of ,nite size, as described by equation (1). In Ryu et al. [75],
the same e!ects were studied for a standing cantilever.

Lee studied the e!ects of an intermediate spring support [76, 77], tapering and elastic
foundation [78], the non-conservativeness parameter g [79], and a relocatable lumped
mass [80].

Takahashi [81, 82] studied the dynamic stability of a cracked Beck's column. The transfer
matrix method was utilized in the analysis. Takahashi and Yoshioka [83] studied the
dynamics of two coupled Beck's columns, interconnected by two springs. Also in that study,
the transfer matrix method was applied.

Sugiyama and Kawagoe [34], and Sugiyama and Mladenov [30] studied the dynamics of
columns subjected to the combined action of uniformly distributed vertical and tangential
forces, thus generalizing Leipholz's column. Six boundary conditions were considered. At
(x"0)!(x"¸) these were: (1) clamped}free,A (2) clamped}pinned, (3) clamped}clamped,
(4) pinned}pinned, (5) pinned}clamped, and (6) clamped}movably clamped (&&roller}skates''
A In each case, if supported at x"¸, this end is movable in the x direction, by means of a &roller-skate'.



TABLE 1

Divergence}-utter transition points [30]

Case i ii iii iv v vi

Non-conservativeness g 0)5 0)7923 0)8546 1)782 1)974 0)5703
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in both the x and the y directions). In all cases, #utter or divergence may occur, depending
on the magnitude of the non-conservativeness parameter g. The divergence}#utter
transition points are as given in Table 1.

Chen and Ku [84] used the "nite element method for an analysis of cantilevered columns
with uniformly distributed follower forces.

2.10. FREE}FREE BEAMS WITH A FOLLOWER LOAD

Free}free beams with a follower load at one end mimic the behavior of #exible missiles
and space structures propelled by a rocket thrust. The problem was initially studied by Beal
[85]. In addition to the beam bending modes, rigid-body translation and rotation is also
possible. In papers concentrating on structural dynamic stability, the rigid-body motions
are typically assumed to be suppressed by a control system. The issue of a control system
was, however, also studied by Beal, by Wu [86, 87] and by Park and Mote [88].

Sugiyama et al. [89] studied the e!ect of internal damping on the #utter boundary for the
case of a direction-controlled follower force.

Mladenov and Sugiyama [90] considered a free}free, #exible two-beam system, where the
two beams are connected by two springs and two dampers, one of each (coupled in parallel)
for the rotational motion, and one of each for the parallel motion. Bending-#utter,
post-#utter}divergence and folding instability may occur, depending on the system
parameters.

Raju and Rao [91], De Rosa et al. [92], and De Rosa [93] considered the dynamics of a
simple model of a rocket motor, modelled as a stepped, free}free beam, resting on rotational
and translational springs, and having follower forces acting at the step.

2.11. TORSIONAL FLUTTER AND COUPLED TORSIONAL-BENDING FLUTTER

Nemat-Nasser and Herrmann [94] considered a plate-like elastic beam with two follower
forces applied symmetrically about the centroid of the cross-section, as sketched in Figure 7.
The beam has two axes of symmetry and, accordingly, the equations of motion for lateral
and torsional motions are uncoupled. The equation for torsional vibrations is

EC
w

L4/
Lx4

#(2pr2!GJ
t
)
L2/

Lx2
#mr2

L2/

Lt2
"0, (35)

where EC
w

is the warping rigidity, GJ
t
is the torsional rigidity, / is the torsional angle, and

r is the polar radius of gyration of the cross-section of the beam. The equation for transverse



Figure 7. An open cross-section-type cantilevered plate-like beam with two follower forces at the free end
(Nemat}Nasser and Herrmann [94]). The beam has length ¸, bending sti!ness EI, torsional sti!ness GJ

t
, warping

sti!ness EC
w
, and density o. The two follower loads, each of magnitude p, are separated by a distance h.
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oscillations can be obtained from equation (1). The boundary conditions for the torsional
motions are

/"0,
L/
Lx

"0 at x"0 and

L2/
Lx2

"0, EC
w

L3/
Lx3

#CpA2r2!
h2

2 B!GJ
tD

L/

Lx
"0 at x"¸. (36)

Depending on the ratio h/r, where h is the distance between the two follower forces, three
types of instability may occur. Torsional buckling occurs for &&small'' values of h/r, torsional
#utter for &&moderate'' values, and transverse #utter for &&large'' values.

Beckett and Jayaraman [95] considered a thin, massless cantilevered rod subjected to
both axial and transverse follower forces and carrying a mass at its free end; see Figure 8.
The coupled equations of motion for transverse and torsional motions are given by

EI
L4y
Lx4

#p
2

L2y
Lx2

!p
1

L2
Lx2

[(¸!x)/]"0 and GJ
t

L2/

Lx2
#p

1
(¸!x)

L2y
Lx2

"0 (37)

respectively. Here p
1

is the transverse, and p
2

is the axial, follower force respectively. The
boundary conditions are

y"0,
Ly

Lx
"0, /"0 at x"0 and

L2y
Lx2

"0, EI
L3y
Lx3

#M
L2y
Lt2

"0, GJ
t

L/

Lx
#J

L2/
Lt2

"0 at x"¸, (38)

where J is again the mass moment of inertia of the end-mass M. (Note that there are
a couple of misprints in the boundary conditions in the original paper.) The in#uence of



Figure 8. A cantilevered rod with a tangential and a transverse follower force at the free end (Beckett and
Jayaraman [95]). The rod, of length ¸, is weightless, but has bending sti!ness EI and torsional sti!ness GJ

t
. At

x"¸ it has a mass M with rotatory inertial J.
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three non-dimensional parameters, p
*
"p

1
/p

2
, p

**
"p

2
¸2/EI and ¸/r (r is the radius of

gyration of the end-mass), on the stability/instability boundary is investigated. Coupled
torsional-bending #utter occurs for all non-zero values of p

*
.

2.12. ENERGETICS

Herrmann and Nemat-Nasser [96, 97] considered the energetics of damped
follower-force loaded columns (for Ziegler's pendulum in reference [96], and for Beck's
column in reference [97]), much in the spirit of Benjamin's energy-balance analysis of
#uid-conveying pipes [98, 99].

An expression for the power delivered by the forces into the structure is obtained by
multiplying the force balance (1) by the transverse velocity Ly/Lt, and integrating over the
structure (from x"0 to ¸). The energy delivered is obtained by integrating the power
balance equation over time t. During one period of oscillation, from t"0 to 2n/u say, the
energy delivered to the structure is, in physical (dimensional) variables, given by

DE"P
2n@u

0
CP

L

0
GE*IA

L3y
L2x LtB

2
#C A

Ly

LtB
2

Hdx#pC
Ly

Lx

Ly

LtD
x/L
Ddt. (39)

At the critical load, the structure performs periodic, steady state oscillations, with
de#ections given by

y(x, t)"A(x) cos(ut#h(x)). (40)

Here, u is the frequency, A(x) is the amplitude and h(x) is the phase angle. Thus, at the
critical load, DE"0. Equation (39) shows that the damping forces exactly balance the
non-conservative force at the critical load, p

cr
. At p(p

cr
, DE(0, and the vibrations decay.

At p'p
cr
, DE'0, and the vibrations grow in amplitude. Roorda and Nemat-Nasser [100]

suggested using equation (39) directly for the evaluation of the critical load, and did so for
the two-degrees-of-freedom model. (This was also done by Benjamin [98].)

It is very informative to work out equation (39) in greater detail, by inserting solution (40).
But it is di$cult to extract further information when continuous damping is present.
Instead, we will consider the simpler model analyzed by Panovko and Sorokin [65], where
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a single dashpot is connected to an otherwise undamped beam at the free end (x"¸). The
damping function C(x) has then the form

Cd(x!¸), (41)

where d is Dirac's delta function, and C is a damping parameter independent of x. Inserting
expression (41) into equation (39) gives, at p"p

cr
,

p
cr
"!C

:2n@u
0

(Ly/Lt)2
x/L

dt

:2n@u
0

(Ly/Lt Ly/Lx)
x/L

dt
, (42)

which, with equation (40) inserted, gives

p
cr
"!C

u
cr

(Lh/Lx)
x/L

"C
u

cr
k
L

"Cc
L
. (43)

Here k
L
and c

L
are the wavenumber and the phase velocity, respectively, at x"¸. Localized

damping thus introduces travelling waves in the structure (in contrast to distributed
damping). In fact, the dynamics of this system is completely equivalent to that of the
cantilevered #uid-conveying pipe [101]. Here the #uid damping is also localized at x"¸,
and the phase velocity at the free end, c

L
, equals the critical #ow speed ;

cr
. The follower

load is proportional to M;2, where M is the #uid mass per unit pipe length, and ; is the
#uid speed. The damping is proportional to M;. The critical #ow speed ;

cr
corresponds

then to the ratio p
cr
/C.

3. EXPERIMENTS

3.1. REUT'S COLUMN

Experiments with Reut's column were performed "rst by Feldt et al. [102] by using
a two-degrees-of-freedom model. The load was realized by the action of an impinging #uid
jet. Air was used as the working #uid. An ingenious calibrating system, able to measure the
force components in the x and y directions, was constructed. The non-conservativeness of
the force depends on the type of impact of the #uid particles onto the rigid end-plate. By
elastic impact, the resultant force will be perpendicular to the end-plate at any time. It will
then be conservative. This situation can be reached approximately if the end-plate is
covered with a very smooth and impenetrable, &&re#ecting'' material, such as glass. By
completely inelastic impact, the resultant force will be vertical at any time. It will then be
non-conservative. This situation can be reached approximately if the end-plate is covered
with a coarse, non-woven, &&non-re#ecting'' material, such as felt carpet.

Sugiyama [103] realized the continuous Reut's column experimentally, also by using an
air jet. In the terminology of his paper [103], g8 "1 corresponds to a pure conservative
loading and g8 "0 to a pure follower force. Sugiyama obtained the value g8 "0)7 by using
a glass plate. In a later paper by Sugiyama et al. [104], the range of realized g8 -values had
been increased signi"cantly; g8 "0)44 was obtained with abrasive paper, 0)22 with
a non-woven material with a "ne mesh, and 0)001 with a non-woven material with a coarse
mesh. The last case is extremely close to the pure follower load. Flutter occurs for
(approximately) g8 (0)18 and divergence for g8 '0)18. Figure 9 shows a &&snapshot'' of the
#utter motion by g8 "0)001, obtained with the aid of electronically controlled #ash
illumination.



Figure 9. Experimental realization of the continuous Reut's column by means of an impinging air jet (from
Sugiyama et al. [103}104]). The photograph of the #utter motion was taken with the aid of electronically
controlled #ash illumination [104].

Figure 10. The experimental Beck's column set-up of Wood et al. [24].
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The e!ect of localized damping on a two-degree-of-freedom model of Reut's column was
studied experimentally by Sugiyama [105]. In that study, g8 "0)001 was obtained. A more
detailed description is given in reference [106].

As control systems become faster and more precise, one might imagine that Beck's column
also could be realized by an impinging air jet, where a control system takes care of always
keeping the jet tangential to the free end. But time delays cannot be completely eliminated.
Kiusalaas and Davis [107] studied the e!ect of a time delay of the follower force by Zielger's
double pendulum. The angle of the force was speci"ed by

L
Lx

y (¸, t!q), (44)

where q is a constant time lag. It was shown that this e!ect is destabilizing, similar to small
internal damping.

3.2. BECK'S COLUMN

Bolotin [6] mentioned that, in the early 1960s, several simple demonstration models were
made in his laboratory. The source of the jets were cylinders with pressurized air.

An &&indirect experimental study''was carried out by Sugiyama et al. [108] by means of an
analog computer. The mechanical system was thus replaced by an equivalent electronic
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circuit. Beck's, Hauger's and Leipholz's columns were investigated and, in general, good
agreement between theoretical and simulated values was found.

The "rst direct, quantitative experimental study of a cantilevered column under a pure
follower load seems to be that carried out by Wood et al. [24]. The thrust was developed
using a water jet, discharged from a so-called nozzle box, attached to the free end. Friction
was minimized by using air bearings. The maximum possible thrust was 16N. The test
columns were made of Perspex. Figure 10 shows the set-up. Figure 11 shows a comparison
between experimental and theoretical values. The "nite size of the nozzle box was taken into
consideration in the calculations. In general, the agreement between theory and experiment
is good.

Sugiyama et al. [36] suggested a more &&direct'' approach by using a small
solid-propellant rocket motor mounted to the free end, as the nozzle box of Wood et al. The
set-up is shown in Figure 12. Figure 13 shows a sequence of &&snapshots'' of the #utter
motion. The thrust curve for the rocket motor is shown in Figure 14(a). The burn-time is
about 4 s. The average thrust is about 40 kgf (392N), or about 25 times the thrust obtained
in reference [24]. The test columns were slender aluminium bars, which have very little
damping. Agreement between theory and experiment is very good if the relaxed stability
criterion (28) is used. The theoretical stability limit obtained in this way is very close to the
result obtained by neglecting damping. That is to say, the destabilizing e!ect of small
damping is not manifested within the very short burning time of the rocket motor.

In the paper by Sugiyama et al. [56], the destabilizing e!ect of an intermediate
concentrated mass was veri"ed experimentally. For those experiments, an improved rocket
motor, having a much smoother thrust curve (see Figure 14(b)), was developed. The &&price''
was a shorter burnout time, only 3)2 s. Theoretical and experimental results were in very
good agreement.

It is known that the #uid damping associated with a follower-type #uid jet may stabilize
vibrations [101, 109]. But a pure follower force may also act stabilizing, rather than
destabilizing! Figure 15 shows a standing cantilevered column with an end-mounted rocket
motor. Before ignition of the rocket motor, the column is buckled due to its own weight, and
Figure 11. Comparison between theoretical and experimental values for the work of Wood et al. [24].
Theoretical values correspond to the intersections of the lines. The experimental values are indicated by n, L, h.



Figure 12. The experimental Beck's column set-up of Sugiyama et al. [36]. (a) Schematic; (b) side-view;
(c) bird's-eye view.
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the weight of the rocket motor. Now consider again the stability map of Figure 3. If
a non-conservative load is applied to a buckled beam, it may be possible to move to the
right in the diagram, out of the divergence domain and into the stable domain. This idea
was veri"ed experimentally by Sugiyama et al. [57]. Figure 16 shows the stability map for
the experimental system. Before ignition, the rocket motor provides a pure dead load of
14)65kgf. This is just above the critical load level, and the column is in a buckled state. After
ignition, the total compressive load is 54)2 kgf, but the non-conservativeness parameter
g"0)74 and thus, the straight con"guration y (x, t),0 is restabilized due to an increased
load level!

A review of the experiments with solid propellant rocket motors, performed at Osaka
Prefecture University, was given by Sugiyama [110].

4. OPTIMUM DESIGN

In almost all studies on optimum design of columns subjected to follower loads, no
attention has been paid to experimental realization. Still, most of these studies have served
an important purpose in the development of optimization techniques for practical,
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large-scale optimization problems with non-conservative forces, such as in aeroelasticity
[111]. Some experiments have been performed in cases where the follower load was
produced by the water jet at the free end of a cantilevered #uid-conveying pipe. Langthjem
[112] veri"ed the stabilizing e!ect of shape optimization of the outer surface of
a #uid-conveying pipe. The test-piece was made by turning of a natural-rubber pipe.
Borglund [113] veri"ed the shape optimization of slender, beam-like cantilever plates with
attached #uid-conveying pipes, and in reference [114], reference is made to some
preliminary test-runs with an optimally shaped aluminum cantilever, subjected to the thrust
of a small rocket motor.
Figure 13. Fluttering motion observed in the experiments by Sugiyama et al. [36]. t is the time that has elapsed
after ignition of the solid rocket motor. The corresponding thrust curve is shown in Figure 14(a). (a) t"3)12 s; (b)
t"3)36 s; (c) t"3)60 s; (d) t"3)84 s; (e) t"4)08 s;



Figure 13. Continued.

Figure 14. Rocket thrust curves from the experiments by Sugiyama et al. (a) from reference [36]; (b) from
reference [56].
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In general, two di!erent formulations have been considered: (1) maximization of the
critical load by constant weight, that is,

maxp
cr

subject to weight"constant,

p
cr
)p

1
, p

2
,2, p

N
; (45)



Figure 15. A standing cantilevered column subjected to the weight and the thrust of an end-mounted rocket
motor (from Sugiyama et al. [57]). The thrust can make a buckled column dynamically stable! The photograph is
a &&snapshot'' of the motion of the test column in its dynamically stable state; the point B shown in Figure 16.

Figure 16. Stability map for the standing cantilever with an end-mounted rocket motor (from Sugiyama et al.
[57]). The point A corresponds to a buckled state under conservative loading. The point B corresponds to
a dynamically stable state, reached after ignition of the rocket motor.

COLUMNS SUBJECTED TO FOLLOWER LOADS 833
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and (2) minimization of the weight by constant critical load, that is

min weight

subject to p
cr
"constant,

p
cr
)p

1
, p

2
,2, p

N
. (46)

Here N is the number of unstable eigenvalues. For an undamped column these two
formulations are completely equivalent. Scaling up the minimum weight design to the initial
volume gives the strongest column, and vice versa, it being presumed that geometrical
constraints di!erent from zero (thickness, say) are not active. This holds true for any type of
load. It is most easily proved by considering the equation of motion in discretized form,

L (d)y"[!u2M(d)#K(d)#pQ]y"0. (47)

(Here j"0#iu.) We assume that the design variables d
e
, collected in the vector d depend

on a common scaling factor m, such that

d"md
0
. (48)

A general cross-section is considered, with sti!ness distribution

s(x)"Mm(x)Nn. (49)

For a circular cross-section, n"2, and for a rectangular cross-section with bending about
the weakest axis, n"1. For a semi-in"nite (in"nitely wide) elastic plate, as considered in
reference [115], each &&strip'' behaves as a thin rectangular beam vibrating about the
strongest axis, and n"3. The equation of motion (47) can then be written as

[!u2mM(d
0
)#mnK(d

0
)#pQ]y"0. (50)

The matrices are thus independent of m. The load factor p can be isolated from the equation
vTLy"0, giving

p"m
vT(u2M

0
!mn~1K

0
)y

vTQy
. (51)

Here, M
0
"M(d

0
) and K

0
"K(v

0
). At a #utter load, bTMu"0 [116], and at a divergence

load, u"0, so for both kinds of instability onset,

p
cr
"!mn

vTK
0
y

vTQy
. (52)

Thus,

Critical load

(Volume of column)n
"Constant. (53)

4.1. SENSITIVITY ANALYSIS

This is the study of the in#uence of parameter changes on the characteristics of a physical
system. Expressions such as Lp

cr
/Lm(x) and Lu

cr
/Lb are called sensitivities. The "rst

expression is essential for shape optimization with gradient-based optimization methods.
Note that this is the derivative of a scalar with respect to a function, so sensitivity analysis is
an extension of the usual concept of derivatives.
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Lancaster [43] provided a general &&framework'' of analysis for general, non-conservative
vibratory systems (whose dynamics are described by non-symmetric matrix equations). But
that work does not cover multiple eigenvalues, and in undamped follower force problems,
#utter occurs through a double eigenvalue. Claudon and Sunakawa [117] considered
sensitivity analysis for such double eigenvalue problems. Pedersen and Seyranian [118]
gave a uni"ed presentation, covering especially the systems reviewed in this paper.
Seyranian [119] developed sensitivity analysis for multiple eigenvalues (not just double).
The case where an n-multiple eigenvalue has n linearly independent eigenvectors is called
weak interaction of these n eigenvalues. On the other hand, if an n-multiple eigenvalue has
only one eigenvector, it has n!1 so-called associated eigenvectors, which can be
determined from the so-called Jordan chain. In that case, the eigenvalues are said to be
under strong interaction. A strong interaction can be recognized geometrically, because the
angle between the eigenvalue branches, in the immediate vicinity of the multiple point, is
always n/n. The critical load for an undamped column subjected to a follower force is thus
characterized by a strong interaction of two eigenvalues.

Sensitivity analysis has many other potential applications than optimization. Chen and
Ku [84, 120}122] suggested a combined Newton}Raphson/bisection iteration method for
determining the critical load for an undamped follower force-loaded column. For starting
the algorithm, it is assumed that #utter occurs by coincidence of two speci"c load}frequency
curves, for example (p

1
, u

1
) and (p

2
, u

2
). Let p* be the initial guess of the critical load. The

"rst approximation to the critical load p
cr

is taken as

p*
cr
"p*#Dp, Dp"!

u2
2
!u2

1
L(u2

2
!u2

1
)/Lp

. (54)

Sensitivity analysis is used to compute L(u2
2
!u2

1
)/Lp analytically. The second

approximation to p
cr

is taken as

p**
cr

"(p*#p*
cr
)/2. (55)

Steps (54) and (55) are repeated until a speci"ed accuracy criterion is satis"ed.

4.2. OPTIMIZATION OF THE CRITICAL LOAD OF THE UNDAMPED BECK'S COLUMN

4.2.1. Early studies
The "rst study of this problem was carried out by Odeh and Tadjbakhsh [123]. Besides

considering the optimization problem, they presented some interesting theoretical results,
such as a proof of the existence of a critical load for non-uniform columns. Apparently,
Odeh and Tadjbakhsh were able to increase the critical load almost 12 times, from 20)05 to
234)48! However, the load}frequency curves (p, u) were not checked in their study.

Vepa [124] considered the problem in minimum weight formulation, and attempted to
derive a general optimality condition for non-conservative systems.

The load maximization problem was studied simultaneously by Sundararajan [125]
and by Plaut [126]. Plaut was the "rst to notice the duality of the problem formulations (45)
and (46).

Claudon [127] demonstrated that it is essential to keep track of all load}frequency curves
when optimizing. By re-analyzing the optimal column in reference [123], Claudon found
that, although the "rst and second eigenvalue branches coincided at p"235)48, the second
and third coincided at p"6. It was pointed out that, as the load at which the "rst and
second eigenvalue branches coincide is increased, the load at which the third and the fourth
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branches coincide decreases simultaneously. Claudon considered the design where these
two load values become equal as being optimal. In this way, p

cr
"57)8 was obtained for the

optimal design. (It is the same solution as shown in reference [126].) Later, Hanaoka and
Washizu [128] discovered that these two coinciding #utter loads could be increased
simultaneously. In this way, they were able to reach p

cr
"83)53. But they also found that, as

the optimization is continued to this level, the second and third load}frequency curves
(p

2
, u

2
) and (p

3
, u

3
), respectively, are prone to coincide and cause a signi"cant drop in the

critical load level (such as that which happened in the study of Odeh and Tadjbakhsh
[123]). Hanaoka and Washizu introduced a discretization by 10 "nite elements with
piecewise linear cross-section area, which has become a kind of a benchmark model
problem for comparing di!erent optimization techniques.

4.2.2. Further re,nements

Masur and Mroz [129] studied the formulation of optimality conditions. However, the
use of such analytical methods has now basically been given up, due to the problem of an
unknown number of coinciding #utter points at the critical load for the optimum design.

Bogacz et al. [38] considered volume minimization (formulation (46)) for stepped
columns. Graphical solutions are given for columns with two segments. (There are then just
two design parameters, a length ratio and a diameter ratio.) Some solutions are given for
columns with up to four segments, but the solution method is not described. Bogacz et al.
state that columns with continuous thickness variation are not of much practical utility,
contrary to their stepped columns. But from an experimental point of view, the
manufacturing of a column with smooth variation in diameter is a small problem in
comparison with the realization of the follower force.

Seguchi et al. [130] applied the discretized model suggested by Hanaoka and Washizu
[128], but used the so-called adjoint variational principle for the shape optimization. In this
way the &&record'' of Hanaoka and Washizu was surpassed slightly, to p

cr
"87)34. Seguchi

et al. suggested the interesting idea that all frequency couples (u
1
, u

2
),

(u
3
, u

4
),2, (u

2n~1
, u

2n
) must coincide at the critical load for the true (global) optimum

design. They also investigated optimum design of Hauger's and Leipholz's columns (see
section 4.4).

Tada et al. [131] suggested a method to improve the robustness of the optimal Beck's
column, that is, to make the optimal column insensitive to small perturbations of the shape.
As pointed out by Hanaoka and Washizu [128], the &&weak point'' is coincidence of the
load}frequency curves (p

2
, u

2
) and (p

3
, u

3
). Tada et al. then suggested keeping these

branches apart by a speci"ed distance &&c'', by including the constraint

(log u2
3
)
p/pi

!(logu2
2
)
p/pi

*c, i"1, 2,2, n, (56)

where 0(p
1
, p

2
,2, p

n
(p

cr
are some speci"ed load values. With c"0)5, the optimum

design not only became more robust but also, the &&record value'' p
cr
"90)80 was obtained.

Gutkowski et al. [132] suggested an optimization algorithm which takes advantage of
the duality of equations (45) and (46). In every iteration, the volume was minimized under
the constraint of constant critical load. Then, before the next iteration, the column was
scaled up to the initial volume. In this way, Gutkowski et al. reached the critical load
p
cr
"92)56. However, the frequency curves u

2
and u

3
were very close at p+70, making the

design very sensitive to small perturbations. Thus, comparing this result to that of Tada
et al. [131], not so much was gained.

When considering the work described up to this point, it seems that just &&higher'' and
&&higher'' local optima have been reported. Ringertz [133] carefully checked the solution of
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Gutkowski et al. [132] and found that their solution was in fact not even a local optimum.
Ringertz constructed a design by a linear interpolation of the column of Gutkowski et al.,
described by the vector d

GMP
, and a uniform column, described by the vector d

0
,

d(m)"(1!m)d
0
#md

GMP
. (57)

The value m"0 gives the uniform column, and m"1 gives the column of Gutkowski et al.
Ringertz found that the strongest column is obtained with the value m"1)261, which gives
the critical load value p

cr
"110)8. Ringertz chose to work with formulation (46) but

suggested a new, extended formulation with constraints on the distance between all
load}frequency curves, at a large number of load values between 0 and p

cr
. In mathematical

terms, the optimization problem was written as

min
d
<(d)*0, subject to

(a) u2
1
(p

k
, d)*0, k"1, 2,2, n,

(b) u2
i`1

(p
k
, d)!u2

i
(p

k
, d)*0, i"1, 2,2, 2N

e
!1,

(c) d
j
)d

j
)dM

j
, j"1, 2,2,N

e
#1, (58)

where< is the volume of the column, n is again the number of speci"ed control load values,
N

e
is the number of "nite elements, and d

j
and dM

j
are lower and upper allowable design

variables respectively. By using the so-called logarithmic barrier function, problem (58) was
transformed into an unconstrained problem, which was solved by using a modi"ed Newton
method. An advantage of this approach is that initially distinct eigenvalues cannot merge to
cause a discontinuous drop in the critical load. In contrast to all works reported so far,
Ringertz did not use a uniform column as initial design, but a slightly modi"ed form of the
design of Gutkowski et al., with a critical load of p

cr
"105)8. The optimization algorithm

improved this value to p
cr
"188)07. The in#uence of a re"ned discretization on the

optimum design was also investigated. The results are shown in Table 2.
Ishida and Sugiyama [134] used a 20-element "nite element model with linearly varying

column diameter (not linearly varying area as in the Hanaoka}Washizu model). They used
the problem formulation (45), that is, without constraints on the distance between
eigenfrequency branches, but applied a genetic algorithm to solve the optimization problem
(in a version called the &&constructive algorithm'', see also reference [135]). This method has
the ability to search for the highest peak in a multipeak function space, and it does not need
derivatives of the critical parameters. The resulting optimum design had the critical load
value p

cr
"94)51.

Langthjem and Sugiyama [114] studied optimization of a more realistic Beck's column
where the follower load is due to an end-mounted rocket motor of "nite size. In this case,
critical load maximization by constant volume is not identical with volume minimization by
TABLE 2

¹he critical load as a function of the number of ,nite elements [133]

N
e

10 20 30 40 50 60 70 80 90 100

p
cr

188)07 141)94 143)01 143)52 143)58 143)57 143)57 143)57 143)58 143)59
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constant critical load, and the load maximization formulation (45) was considered,
including constraints similar to (58b). It was found that by mass-ratios k"
(mass of rocket motor)/(mass of column) which can be realized experimentally, the critical
load can only be increased by a factor of 1)3}1)4. This is similar to what can be obtained in
the case of a pure conservative end-load. Also, the great sensitivity to small changes in the
design parameters, and the optimization method dependency by Beck's column, are not
seen for &&practical'' values of k.

4.2.3. Extended versions of the undamped Beck1s column

Langthjem and Sugiyama [136] computed optimal column shapes for several values of
the non-conservativeness parameter g between 0 and 1 (speci"cally, for g"0)0, 0)2, 0)4, 0)5,
0)6, 0)8 and 1)0). This problem was originally proposed by Zyczkowski and Gajewski [137],
but in that paper they approximated the continuous problem by Ziegler's pendulum [58]
and considered only anti-tangential forces (g(0) where only divergence instability is
possible, not #utter. It was found that by optimization, the instability type changes from
divergence to #utter by just a small non-conservative force component (0(g(0)2), and
the gain of optimization is much larger than by a pure conservative load. For example, by
g"0)0 the critical load can be increased 1)33 times, while by g"0)2 it can be increased 4)57
times, and by g"0)4 it can be increased 10)32 times! The main results are summarized in
Table 3. The critical load of the uniform reference column is denoted by p0

cr
. The instability

mechanism is listed in the last column. Here, SMB means &&single mode buckling'', SFF
means &&single frequency #utter'' and TFF means &&two frequencies #utter''. SFF means that
one pair of load}frequency curves (p, u) coincide at the critical load; by TFF, two pairs
coincide.

4.3. OPTIMIZATION OF THE CRITICAL LOAD OF THE DAMPED BECK'S COLUMN

The "rst study of this problem was carried out by Plaut [126]. Internal damping was
included, with p"0)01. External damping was not included. A gradient projection method,
similar to the one used for the undamped case, was applied, and the critical load was
increased from 10)96 to 27)5.

The same problem was studied by Claudon and Sunakawa [138, 139]. Also here, internal
damping was included, with p"0)01, and external damping was not included. Claudon and
Sunakawa used a Galerkin-type discretization into orthogonal polynomials and
a continuous design description (implying that numerical integration of the equilibrium
TABLE 3

Summary of the results from reference [136]

g p0
cr

Min. vol. by p0
cr

Optimal p
cr

by unit vol. p
cr
/p0

cr
Instability

0)00 2)47 0)866 3)29 1)33 SMB
0)20 3)33 0)468 15)21 4)57 SFF
0)40 5)29 0)311 54)58 10)32 SFF
0)50 16)05 0)486 67)96 4)23 TFF
0)60 16)26 0)513 61)78 3)80 TFF
0)80 17)59 0)480 76)35 4)34 TFF
1)00 20)05 0)379 139)30 6)95 TFF
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equation was necessary at each design iteration). The optimization method was based on
a gradient projection method, taking the two lowest #utter loads, p

1
and p

2
, into account.

Two examples were considered in reference [138]. For the uniform column, p
1
"10)96 and

p
2
"109)9. In the "rst example, p

1
was maximized with constant total mass and a "xed

value of the second #utter load (p
2
:"100) as constraints. By optimization, p

1
was raised to

25)5 (while p
2

drifted slightly, down to 99)5, due to the strongly non-linear character of the
problem). In the second example, p

1
and p

2
were optimized simultaneously, and the values

p
1
"p

2
"39)2 were reached.

Seguchi et al. [140] applied the 10-"nite-element model of Hanaoka and Washizu, with
internal damping p"0)01 and external damping b"1)0. With these values of the damping
parameters, the two lowest #utter loads for the uniform column are p

1
"17)8 and

p
2
"112)0 respectively. By using a gradient projection method to obtain the optimum

design, these two values changed to p
1
"66)79 and p

2
"67)30 respectively. However, the

critical load is almost a triple #utter load, as p
3
+68)37.

Langthjem [141] studied the in#uence of internal and external damping on the optimal
design. The equation of motion was discretized by using a generalized Ritz method [40, 41,
118]. The mass distribution was expressed in terms of orthogonal trigonometric functions.
That study also revealed that transference of instability branch is possible for the damped
Beck's column. A detailed mathematical study of this phenomenon, which occurs through
collision of eigenvalues, was carried out by Seyranian [142], who cites physical examples
from experiments with #uid-conveying pipes by Bishop and Fawzy [9], and Sugiyama and
Noda [143].

Ringertz [52] also applied the 10-"nite-element model introduced in reference [128] to
study minimum weight design of the damped Beck's column. The stability analysis was
carried out by making use of the matrix stability criterion (24). As in reference [133], the
barrier method was used in the solution of the optimization problem.

Langthjem and Sugiyama [144] considered weight minimization of the damped Beck's
column with a constraint on the static buckling load (by a pure conservative loading). The
idea was that since the gain by optimization under non-conservative loading is so much
larger than that by conservative loading, the optimal column (for non-conservative loading)
might become very weak for other types of loads than the design load. In applications, it
may be important that the optimal column also is capable of supporting these loads. For
example, a space structure may be subjected solely to follower loads in space, but it must be
able to carry some dead load while being subjected to the gravity of the Earth. The
optimization problem was written as

min
d
<(d) subject to

(i) p
f
*p0

f
[by g"1 in equation (8)],

(ii) p
b
*cp0

b
[by g"0 in equation (8)],

(iii) a
j
)G

!e
j

for p8 )p)p
f
!p

*
0 for p

f
!p

*
)p)p

f
, j"1, 2,2, 2N

e
,

(iv) d
k
)d

k
)dM

k
, k"1, 2,2,N

e
#1, (59)

where < is again the volume of the column, and p0
f

and p0
b

are the #utter load (by pure
follower loading) and the buckling load (by pure &&dead'' loading), respectively, for the



TABLE 4

Summary of results obtained in reference [144]

Slack parameter c Minimum volume Flutter load p
f

Buckling load p
b

0)00 0)3585 11)22 0)2200
0)25 0)5146 11)69 0)6169
0)50 0)6415 12)83 1)2337
0)75 0)7534 11)22 1)8506
1)00 0)8664 13)32 2)4674
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uniform column. Again, a
j
"R(j

j
) and p8 and p

*
are some chosen load values. Finally, e

j
are

small, positive numbers. The buckling constraint (ii) includes a &&slack parameter'' c3[0, 1].
Setting c"0)25, for example, means that the buckling load of the optimal column may not
be less than 0)25 times the buckling load of the uniform column. The results are summarized
in Table 4. When c"1)0, the optimal column is the optimal Euler column, as obtained by
Tadjbakhsh and Keller [145].

A continuation of the study by Langthjem and Sugiyama [136], considering the damped
Beck's column, is given in reference [146]. With damping, critical load maximization by
constant volume and volume minimization by constant critical load are not identical in
general, but only in some special cases. Namely, when stability is lost (1) through a simple or
a double zero eigenvalue j"0, and (2) through one pair of simple, complex conjugate
eigenvalues, j"$iu. As in reference [136], optimization is carried out for g"0)0, 0)2, 0)4,
0)6, 0)8 and 1)0. When optimizing with the g-values 0)2 and 0)4, the divergence}#utter
transition point moves from 0)5 to the actual g-value. This is because these points are local
optima in the g!p

cr
plane. (Exactly the same situation is seen for the end-mounted spring

with optimal sti!ness [69], see section 2.9.) For these g-values, as well as for g"0)5, the
optimization is carried out at a non-di!erentiable double zero eigenvalue. The optimum
design changes smoothly with g, although di!erent stability mechanisms are active. The
main results are summarized in Table 5. The instability mechanisms are again listed in the
last column. SMB means &&single mode buckling'', D}F means coincidence of divergence
and #utter and, as before, SFF means &&single frequency #utter'', and TFF means &&two
frequencies #utter''. By SFF one eigenvalue branch moves into the unstable region at the
critical load (in fact, one pair of complex conjugate eigenvalue branches). By TFF, two
branches go into the unstable region simultaneously.

4.4. OPTIMIZATION OF HAUGER'S AND LEIPHOLZ'S COLUMNS

Anderson [147] studied maximization of the critical load of Hauger's column with
internal and external damping, assuming a parabolic mass distribution,

m(x)"c
1
#c

2
(1!x)c3, (60)

where c
1
, c

2
and c

3
are positive constants. The value of c

1
was prescribed and the optimum

values of c
2

and c
3

were found for several values of external damping, with "xed value of
internal damping. The percentage increase in the critical load was between 53 and 110 for
rectangular cross-sections, and between 20 and 54 for circular cross-sections. The
optimization problem was solved by using an optimization method devised by Rosenbrock.



TABLE 5

Summary of the results from reference [146]

g p0
cr

Min. vol. by p0
cr

Optimal p
cr

by unit vol. p
cr
/p0

cr
Instability

0)00 2)47 0)866 3)29 1)33 SMB
0)20 3)33 0)737 6)13 1)84 D}F
0)40 5)29 0)744 9)55 1)81 D}F
0)50 10)07 0)961 10)91 1)08 D}F
0)60 9)59 0)942 10)80 1)13 SFF
0)80 9)77 0)463 45)23 4)63 TFF
1)00 11)22 0)368 68)61 6)11 TFF
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Related to this paper are a couple written by Thomas [148, 149], who considered weight
minimization of Hauger's column. The damped Hauger's column was reconsidered by
Claudon [150], using formulation (45).

Claudon [127] also considered optimum design of the undamped Hauger's column in
addition to his important work on the undamped Beck's column. Similar to that study, the
load}frequency curves were carefully traced. For the uniform column, the two lowest #utter
points are p

1
"151 and p

2
"946 respectively. By optimization the #utter load was raised to

p
cr
"425, but this is a discrete instability where the second and the third eigenvalue

branches coincide.
The same problem was reconsidered by Seyranian and Sharanyuk [115] who analyzed

the dynamic stability by the "nite di!erence method. By using a gradient projection
method, they increased the critical load to 433. Flutter occurs through coincidence of the
"rst and the second eigenvalue branches. By further optimization, the second and the third
eigenvalue branches coincide, as also experienced by Claudon [127].

Another analysis of optimum design of Hauger's column was carried out by Seguchi et al.
[130], using the 10-"nite-element model. The critical load was raised to 367. They also
considered optimization of Leipholz's column. Here, the critical load was increased from
40)1 to 117.

5. DYNAMIC STABILITY UNDER A PERIODIC FOLLOWER FORCE

The "rst study of parametric resonance in Beck's column is due to Sugiyama et al. [108].
This was an &&experimental'' study which was conducted by means of an analog computer.
The load was prescribed as

p(t)"p
1
#p

2
cos(Xt) (61)

and the dynamics were investigated for various values of p
1

and p
2
. It was found that

combination resonances of di!erence type (u
2
!u

1
and u

3
!u

2
, for example) can occur,

in addition to simple parametric resonance. Theoretical support of the analog simulations
was given later by Sugiyama et al. [151]. By applying a discretization method to the
equation of motion (the "nite di!erence method was used), a system of N coupled Mathieu
equations was obtained,

m
d2y

i
dt2

#EI
N
+
j/1

s
ij
y
j
#(p

1
#p

2
cos(Xt))

N
+
j/1

t
ij
y
j
"0, i"1, 2,2,N. (62)
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Here s
ij

and t
ij

are coe$cients which depend on the discretization method. The
&&experimental'' predictions of reference [108] were con"rmed by making use of Hsu's
resonance criteria [152].

The instability boundaries were determined numerically by Iwatsubo et al. [153], by
making use of direct numerical simulations. The problem was reconsidered by Iwatsubo
et al. in reference [154]. It was found that combination resonances of di!erence type can
occur between the mth mode and the (m#2n!1)th mode (m, n"1, 2,2), while sum-type
resonances can occur between the mth mode and the (m#2n)th mode. The e!ect of
damping was also considered.

Kim and Choo [155] considered a free}free Timoshenko beam subjected to a pulsating
follower force. This is a simple mathematical model of a missile, or a rocket. An
intermediate concentrated mass was included, to represent control machinery. The
instability regions were determined with the aid of the method of multiple scales. (See, e.g.,
the book by Nayfeh [156], who also discusses many other methods for the Mathieu
equation.) Also here, combination resonances of both sum and di!erence type were found,
in addition to simple parametric resonance. Among many interesting results, it was found
that changes in load level, column slenderness and size of the concentrated mass may
change a combination resonance from sum type to di!erence type, or vice versa. It is worth
noticing that exactly the same problem was studied 10 years earlier by Ryu [32], but
unfortunately published only in the Korean language. Ryu's study also includes distributed
friction (as mentioned in section 2.2) and direction control of the thrust.

Kang and Tan [33] considered parametric instability of Leipholz's column under four
sets of boundary conditions: (1) clamped}free, (2) pinned}pinned, (3) clamped}clamped, and
(4) clamped}pinned. The background for this study is disc brake pad instability. The steady
state solution was approximated by a Fourier series. By balancing the harmonic terms, an
algebraic eigenvalue problem was obtained, and the stability analysis was performed
by computing and checking the complex eigenvalues. In addition to simple parametric
resonance, cases (1) and (2) exhibit combination resonance of the sum type, while cases (3)
and (4) exhibit both sum- and di!erence-type resonances.

6. NON-LINEAR DYNAMICS

An enormous amount of work has been done on the non-linear dynamics of the follower
force-loaded double pendulum. As even the linear dynamics is very interesting and
counterintuitive, there are indeed very many interesting non-linear phenomena; see, e.g.,
references [157, 158]. The non-linear dynamics of Beck's column may be even richer, but
studies into this problem are relatively sparse. (However, there are a substantial number of
both theoretical and experimental studies of the related #uid-conveying pipe problem [1, 2].)

Rao and Rao [159] determined the exact values of the critical load for Beck's column
with a partial follower force, in the non-conservativeness parameter range 0)g)0)5.
A closed-form solution was obtained for a geometrically exact non-linear formulation
(sometimes called &&the elasticum''). In reference [160], the same model was used for
a detailed study of the variations in the critical load around the value g"0)5. Zuo and
Hjelmstad [161] showed mathematically, by using the same exact non-linear formulation,
that static bifurcations can exist only for 0)g)0)5.

The bifurcation occurring at the #utter limit for Beck's column was analyzed theoretically
by Kolkka [162] for the case with external damping only, and by Chen [163] for the case
with internal damping. In both cases, the bifurcation is of the supercritical type, meaning
that the non-linearities are stabilizing in the vicinity of the #utter boundary.
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Andersen and Thomsen [164] studied the e!ects of a tip mass of "nite size on the
bifurcation. A "fth order non-linear model was developed and analyzed by the method of
multiple scales, and by direct numerical simulation. Furthermore, an independent
"nite-element model was developed, to check the results. The main results are that
increasing rotatory inertia of the tip mass, and increasing the ratio (external
damping)/(internal damping), may result in a change of the bifurcation type, from
supercritical to subcritical. This means that the non-linearities become destabilizing, and
a su$ciently strong disturbance may initiate unstable, #utter-like oscillations at a load level
below the critical (as obtained from a linear analysis).

Gasparini et al. [165] compared stability maps for the continuous Beck's column with
those for two-, three-, four-, "ve-, and 10-degrees-of-freedom models. The stability analysis
for the continuous column was carried out by using both linear and non-linear
"nite-element models. Vitaliani et al. [166] computed very large deformations of beams
subjected to transverse follower forces by using the "nite-element method.

7. PLATES SUBJECTED TO FOLLOWER FORCES

Higuchi and Dowell [67, 167, 168] studied the dynamic stability of a completely free
panel subjected to a follower force distributed along one edge. These studies have
application to the dynamics of large space structures, such as solar panels in a solar power
station, when they are moved into orbit by rocket thrusters. Kim and Park [169]
considered the same problem when the follower loading is acting at an intermediate section
of the plate. With the same applications in mind, Bismarck-Nasr [170] investigated
cylindrically curved shallow shells subjected to follower forces.

Kim and Kim [171] studied the dynamics of a cantilevered Mindlin plate subjected to
a uniformly distributed follower loading at the free edge. Both isotropic and orthotropic
plates were considered. In the isotropic case, the loading parameter was
non-dimensionalized as p"p

0
¸2/D, where p

0
is the physical load, ¸ is the length of the

plate, and D is the sti!ness. Direct comparison can thus be made with a beam (see equation
(7)). A very thin-walled plate is equivalent to a slender beam, with the critical load value
20)05. As the thickness is increased, the critical load approaches asymptotically the level
+52. In the orthotropic case, the loading parameter is non-dimensionalized di!erently,
and it is di$cult to compare the results.

The dynamics of disc-brake systems has been studied by Nishiwaki [172], Mottershead
and Chan [173], and Lee and Waas [174]. The mathematical model is a rotating annular
plate subjected to a stationary frictional follower load. These studies are closely related to
those in reference [33], but with emphasis on the dynamics of the disc, rather than the
disc-brake pad.

8. FINITE LOAD INCREASE

In all the studies reviewed so far, the load increase is assumed to be quasistatic.
Experimental studies indicate a need for investigating the e!ects of a dynamic increase.
Neishtadt and Sidorenko [175] investigated the dynamics of Ziegler's pendulum when the
magnitude of the follower force is slowly increasing. Numerical simulations were performed,
and it was demonstrated that the stability loss may be delayed, meaning that the
dynamically increasing load level may signi"cantly exceed the critical value before unstable
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oscillations develop. An input}output function was constructed, which can predict the time
delay, given the initial load value.

A continuation of studies along these lines, to deal with continuous systems with follower
loads, would be very useful. Investigation of other types of load increments is also desirable.

9. CONCLUSION

This paper has surveyed the dynamics of simple, #exible structural elements subjected to
non-conservative forces. Emphasis is on the &&canonical problems'', Beck's, Reut's,
Leipholz's and Hauger's columns, but some studies of plate and shell problems have also
been included. The most important applications are: rockets, missiles, slender space
structures (solar panels, etc.), and automobile disk and drum brakes. Beck's and Reut's
columns have been realized experimentally, and very good agreement between theory and
experiments has been found. Leipholz's column is basically realized in an automobile brake
system, where noise due to instability is a well-known problem.

Studies of two-degrees-of-freedom models, such as Ziegler's pendulum, have not been
categorically included in this paper. Those problems constitute basically an independent
area, and to cover it would most likely result in more additional references than the 170-plus
references covered here.

Control theory and applications is another area which has not been covered here,
although it is related to optimization.

In the future development of the subject, experimental work, and theoretical work closely
related to experiments, ought to be intensi"ed. On the experimental side, new ideas for
a simple realization of pure follower forces would be extremely important. The experiments
which have been reviewed here may inspire and guide a sound re"nement of dynamic
stability theory.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the following publishers and authors for permission
to reproduce "gures: Elsevier Science and Professor V. V. Bolotin (Figure 4); Academic
Press and Professor S. C. Sinha (Figures 5 and 6); The Royal Society (London) and
Mr. P. M. Saunders (Figures 10 and 11). We also would like to thank Professor Niels Olho!,
Aalborg University, for his support of this work. The "rst author (M.L.) is grateful to
Professor Pauli Pedersen, Technical University of Denmark, for having introduced him to
the fascinating subject of dynamic stability.

REFERENCES

1. M. P. PAIGDOUSSIS and G. X. LI 1993 Journal of Fluids and Structures 7, 137}204. Pipes conveying
#uid: a model dynamical problem.

2. M. P. PAIGDOUSSIS 1998 Fluid}Structure Interactions: Slender Structures and Axial Flow. London:
Academic Press.

3. G. HERRMANN 1971 NASA Contractor Report CR-1782, National Aeronautics and Space
Administration ( NASA). Dynamics and stability of mechanical systems with follower forces.

4. W. T. KOITER 1996 Journal of Sound and <ibration 194, 636}638. Unrealistic follower forces.
5. Y. SUGIYAMA, M. A. LANGTHJEM and B.-J. RYU 1999 Journal of Sound and <ibration 225,

779}782. Realistic follower forces.
6. V. V. BOLOTIN 1999 Applied Mechanics Review 52, R1}R9. Dynamic instabilities in mechanics of

structures.



COLUMNS SUBJECTED TO FOLLOWER LOADS 845
7. Y. SUGIYAMA, K. KASHIMA and H. KAWAGOE 1976 Journal of Sound and <ibration 45, 237}247.
On an unduly simpli"ed model in the non-conservative problems of elastic stability.

8. M. BECK 1952 Zeitschrift fu( r Angewandte Mathematik und Physik 3, 225}228 and 476}477.
Die Knicklast des einseitig eingespannten, tangential gedruK ckten Stabes.

9. R. E. D. BISHOP and I. FAWZY 1976 Philosophical ¹ransactions of ¹he Royal Society (London),
Series A 284, 1}47. Free and forced oscillation of a vertical tube containing a #owing #uid.

10. G. HERRMANN 1967 Applied Mechanics Review 20, 103}108. Stability of equilibrium of elastic
systems subjected to nonconservative forces.

11. Y. SUGIYAMA and T. SEKIYA 1971 Journal of the Japan Society for Aeronautical and Space
Sciences 19, 61}68. Surveys of the experimental studies of instability of elastic systems subjected
to nonconservative forces (in Japanese).

12. C. SUNDARARAJAN 1975 Shock and <ibration Digest 7, 89}105. The vibration and stability of
elastic systems subjected to follower forces.

13. T. A. WEISSHAAR and R. H. PLAUT 1981 Optimization of Distributed Parameter Structures (E. J.
Haug and J. Cea, editors), 843}864. Alphen aan den Rijn: Sijtho! and Noordho!. Structural
optimization under nonconservative loading.

14. A. P. SEYRANIAN 1990 Advances in Mechanics 13, 89}124. Destabilization paradox in stability
problems of nonconservative systems (in Russian).

15. I. E. GARRICK and W. H. REED III 1981 Journal of Aircraft 18, 897}912. Historical development
of aircraft #utter.

16. V. V. BOLOTIN 1963 Non-conservative Problems of the ¹heory of Elastic Stability. Oxford:
Pergamon Press.

17. Y. G. PANOVKO and I. I. GUBANOVA 1965 Stability and Oscillations of Elastic Systems. New
York: Consultants Bureau.

18. H. ZIEGLER 1968 Principles of Structural Stability. Waltham, Massachusetts: Blaisdell
Publishing Company.

19. K. HUSEYIN 1978 <ibrations and Stability of Multiple Parameter Systems. Alphen aan den Rijn:
Sijtho! and Noordho!.

20. H. LEIPHOLZ 1980 Stability of Elastic Systems. Alphen aan den Rijn: Sijtho! and Noordho!.
21. M. S. EL NASCHIE 1990 Stress, Stability and Chaos in Structural Engineering. An Energy

Approach. New York: McGraw-Hill.
22. Z. P. BAZANT and L. CEDOLIN 1991 Stability of Structures. Oxford: Oxford University Press.
23. A. GAJEWSKI and M. ZYCZKOWSKI 1988 Optimal Structural Design under Stability Constraints.

Dordrecht: Kluwer.
24. W. G. WOOD, S. S. SAW and P. M. SAUNDERS 1969 Proceedings of the Royal Society (¸ondon),

Series A 313, 239}248. The kinetic stability of a tangentially loaded strut.
25. K. SEZAWA 1927 ¹okyo Imperial ;niversity. Bulletin of Earthquake Research Institute 3, 43}53.

On the decay of waves in visco-elastic solid bodies.
26. J. A. HUDSON 1980 ¹he Excitation and Propagation of Elastic =aves. Cambridge: Cambridge

University Press.
27. G. K. BATCHELOR 1967 An Introduction to Fluid Mechanics. Cambridge: Cambridge University

Press.
28. H. LEIPHOLZ 1962 Zeitschrift fuK r Angewandte Mathematik und Physik 13, 581}589. Die Knicklast

des einseitig eingespannten Stabes mit gleichmaK ssig verteilter, tangentialer LaK ngsbelastung.
29. W. HAUGER 1966 Ingenieur-Archiv 35, 221}229. Die Knicklasten elastischer StaK be unter

gleichmaK {ig verteilten und linear veraK nderlichen, tangentialen DruckkraK ften.
30. Y. SUGIYAMA and K. A. MLADENOV 1983 Journal of Sound and <ibration 88, 447}457.

Vibration and stability of elastic columns subjected to triangularly distributed sub-tangential
forces.

31. M. P. PADOUSSIS 1973 Journal of Sound and <ibration 29, 365}385. Dynamics of cylindrical
structures subjected to axial #ow.

32. B.-J. RYU 1988 Ph.D. thesis, Department of Mechanical Engineering, >onsei ;niversity, Seoul,
Korea. Dynamic stability of the free}free Timoshenko beam subjected to a nonconservative force
(in Korean).

33. B. KANG and C. A. TAN 2000 Journal of Sound and <ibration 229, 1097}1113. Parametric
instability of a Leipholz column under periodic excitation.

34. Y. SUGIYAMA and H. KAWAGOE 1975 Journal of Sound and<ibration 38, 341}355. Vibration and
stability of elastic columns under the combined action of uniformly distributed vertical and
tangential forces.



846 M. A. LANGTHJEM AND Y. SUGIYAMA
35. P. PEDERSEN 1977 International Journal of Solids and Structures 13, 445}455. In#uence of
boundary conditions on the stability of a column under non-conservative load.

36. Y. SUGIYAMA, K. KATAYAMA and S. KINOI 1995 Journal of Aerospace Engineering 8, 9}15.
Flutter of cantilevered column under rocket thrust.

37. M. R. MORGAN and S. C. SINHA 1983 Journal of Sound and <ibration 91, 85}101. In#uence of
a viscoelastic foundation on the stability of Beck's column: an exact analysis.

38. R. BOGACZ, H. IRRETIER and O. MAHRENHOLTZ 1980 Ingenieur-Archiv 49, 63}71. Optimal
design of structures subjected to follower forces.

39. H. MATSUDA, T. SAKIYAMA and C. MORITA 1993 Zeitschrift fu( r Angewandte Mathematik und
Mechanik 73, 383}385. Variable cross sectional Beck's column subjected to nonconservative
load.

40. S. N. PRASAD and G. HERRMANN 1969 International Journal of Solids and Structures 5, 727}735.
The usefulness of adjoint systems in solving nonconservative stability problems of elastic continua.

41. S. N. PRASAD and G. HERRMANN 1972 International Journal of Solids and Structures 8, 29}40.
Adjoint variational methods in nonconservative stability problems.

42. G. L. ANDERSON 1973 Journal of Sound and <ibration 27, 279}296. Application of a variational
method to dissipative, non-conservative problems of elastic stability.

43. P. LANCASTER 1966 ¸ambda-Matrices and <ibrating Systems. Oxford: Pergamon Press.
44. I. FAWZY and R. E. D. BISHOP 1976 Proceedings of the Royal Society (¸ondon), Series A 352,

25}40. On the dynamics of linear non-conservative systems.
45. C. D. MOTE Jr 1971 Journal of the Engineering Mechanics Division. Proceedings of ASCE 97,

645}656. Nonconservative stability by "nite element.
46. R. S. BARSOUM 1971 International Journal for Numerical Methods in Engineering 3, 63}87. Finite

element method applied to the problem of stability of a nonconservative system.
47. V. V. BOLOTIN 1995 Nonlinear Stability of Structures: ¹heory and Computational ¹echniques,

CISM ¸ectures and Courses No. 342. (A. N. Kounadis and W. B. KraK tzig, editors). Wien, New
York: Springer-Verlag. Dynamic stability of structures.

48. Y. SAAD 1980 ¸inear Algebra and its Applications 34, 269}295. Variations on Arnoldi's method
for computing eigen elements of large unsymmetric matrices.

49. Y. SAAD 1981 Mathematics of Computation 37, 105}126. Krylov subspace methods for solving
large unsymmetric linear systems.

50. Y. SAAD 1984 Mathematics of Computation 42, 567}588. Chesbyshev acceleration techniques for
solving nonsymmetric eigenvalue problems.

51. I. GOLDHIRSCH, S. A. ORSZAG and B. K. MAULIK 1987 Journal of Scienti,c Computing 2, 33}58.
An e$cient method for computing leading eigenvalues and eigenvectors of large asymmetric
matrices.

52. U. T. RINGERTZ 1995 Proceedings of the First=orld Congress of Structural and Multidisciplinary
Optimization, (N. Olho! and G. I. N. Rozvany, editors), 741}748. Oxford: Pergamon Press.
Optimization of eigenvalues in nonconservative systems.

53. W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING and B. P. FLANNERY 1992. Numerical
Recipes in Fortran. ¹he Art of Scienti,c Programming. Cambridge: Cambridge University Press.

54. G. HERRMANN and I.-C. JONG 1965 Journal of Applied Mechanics 32, 592}597. On the
destabilizing e!ect of damping in nonconservative elastic systems.

55. G. HERRMANN 1971 Instability of Continuous Systems, (H. Leipholz, editor), 238}247. Berlin:
Springer Verlag. Determinism and uncertainty in stability.

56. Y. SUGIYAMA, J. MATSUIKE, B.-J. RYU, K. KATAYAMA, S. KINOI and N. ENOMOTO 1995 AIAA
Journal 33, 499}503. E!ect of concentrated mass on stability of cantilevers under rocket thrust.

57. Y. SUGIYAMA, K. KATAYAMA, K. KIRIYAMA and B.-J. RYU 2000 Journal of Sound and <ibration
Experimental veri"cation of dynamic stability of vertical cantilevered columns subjected to
a sub-tangential force (in press).

58. H. ZIEGLER 1952 Ingenieur Archiv 20, 49}56. Die StabilitaK tskriterien der Elastomechanik.
59. V. V. BOLOTIN and N. I. ZHINZHER 1969 International Journal of Solids and Structures 5,

965}989. E!ects of damping on stability of elastic systems subjected to nonconservative forces.
60. V. V. BOLOTIN 1971 Instability of Continuous Systems (H. Leipholz, editor), 349}360. Berlin:

Springer-Verlag. Stability of viscoelastic systems subjected to nonconservative forces.
61. P. G. DRAZIN and W. H. REID 1981 Hydrodynamic Stability. Cambridge: Cambridge University

Press.
62. S. H. CRANDALL 1970 Journal of Sound and <ibration 11, 3}18. The role of damping in vibration

theory.



COLUMNS SUBJECTED TO FOLLOWER LOADS 847
63. T. E. SMITH and G. HERRMANN 1972 Journal of Applied Mechanics 39, 628}629. Stability of
a beam on an elastic foundation subjected to a follower force.

64. R. H. PLAUT and E. F. INFANTE 1970 International Journal of Solids and Structures 6, 491}496.
The e!ect of external damping on the stability of Beck's column.

65. Ya. G. PANOVKO and S. V. SOROKIN 1987 Mechanics of Solids (Mekhanika ¹verdogo ¹ela) 22,
128}132. Quasi-stability of viscoelastic systems with tracking forces.

66. I. LOTTATI and I. ELISHAKOFF 1987 Ingenieur-Archiv 57, 413}419. On a new &destabilization'
phenomenon: e!ect of rotary damping.

67. K. HIGUCHI and E. H. DOWELL 1992 AIAA Journal 30, 820}825. E!ect of structural damping on
#utter of plates with a follower force.

68. Y. SUGIYAMA, S. MAEDA and H. KAWAGOE 1974 ¹heoretical and Applied Mechanics
(Proceedings of the 22nd National Congress for Applied Mechanics, 1972), 33}45. ¹okyo:
;niversity of ¹okyo Press. Destabilizing e!ect of elastic constraint on the stability of
nonconservative elastic systems.

69. Y. SUGIYAMA, H. KAWAGOE and S. MAEDA 1975. ¹heoretical and Applied Mechanics, <ol. 23
(Proceedings of the 23rd Japan National Congress for Applied Mechanics, 1973), (I. Tani and T.
Okumura, editors). 125}135. ¹okyo: ;niversity of ¹okyo Press. Destablizing e!ect of elastic
constraints on the stability of nonconservative elastic systems (II: The e!ect of elastic
support).

70. A. N. KOUNADIS 1977 Journal of Applied Mechanics 44, 731}736. Stability of elastically
restrained Timoshenko cantilevers with attached masses subjected to a follower force.

71. K. SATO 1991 JSME International Journal 34, 459}465. Vibration and stability of
a clamped-elastically restrained Timoshenko column under nonconservative loading.

72. K. SATO 1996 Journal of Sound and <ibration 194, 623}630. Instability of a clamped-elastically
restrained Timoshenko column carrying a tip load, subjected to a follower force.

73. V. SUNDARARAMAIAH and G. VENKATESWARA RAO 1980 AIAA Journal 18, 124}125. E!ect of
shear deformation and rotatory inertia on the stability of Beck's and Leipholz's columns.

74. B.-J. RYU and Y. SUGIYAMA 1994 Computers and Structures 51, 331}335. Dynamic stability of
cantilevered Timoshenko columns subjected to a rocket thrust.

75. B.-J. RYU, K. KATAYAMA and Y. SUGIYAMA 1998 Computers and Structures 68, 499}512.
Dynamic stability of Timoshenko columns subjected to subtangential forces.

76. H. P. LEE 1995 International Journal of Solids and Structures 32, 1371}1382. Divergence and
#utter of a cantilever rod with an intermediate spring support.

77. H. P. LEE 1996 Computers and Structures 60, 31}39. E!ects of damping on the dynamic stability
of a rod with an intermediate spring support subjected to follower forces.

78. H. P. LEE 1996 International Journal of Solids and Structures 33, 1409}1424. Dynamic stability of
a tapered cantilever beam on an elastic foundation subjected to a follower force.

79. H. P. LEE 1996 Computer Methods in Applied Mechanics and Engineering 131, 147}157.
Damping e!ects on the dynamic stability of a rod subjected to intermediate follower loads.

80. H. P. LEE 1997 Computer Methods in Applied Mechanics and Engineering 144, 23}31. Flutter of
a cantilever rod with a relocatable lumped mass.

81. I. TAKAHASHI 1998 International Journal of Solids and Structures 35, 3071}3080. Vibration and
stability of a cracked shaft simultaneously subjected to a follower force with an axial force.

82. I. TAKAHASHI 1999 Computers and Structures 71, 585}591. Vibration and stability of
non-uniform cracked Timoshenko beam subjected to follower force.

83. I. TAKAHASHI and T. YOSHIOKA 1996 Computers and Structures 59, 1033}1038. Vibration and
stability of a non-uniform double-beam subjected to follower forces.

84. L.-W. CHEN and D.-M. KU 1991 Computers and Structures 41, 813}819. Stability analysis of
a Timoshenko beam subjected to distributed follower forces using "nite elements.

85. T. R. BEAL 1965 AIAA Journal 3, 486}495. Dynamic stability of a #exible missile under constant
and pulsating thrusts.

86. J. J. WU 1975 Journal of Sound and<ibration 42, 45}52. On the stability of a free}free beam under
axial thrust subjected to directional control.

87. J. J. WU 1976 Journal of Sound and <ibration 49, 141}147. On missile stability.
88. Y.-P. PARK and C. D. MOTE 1985 Journal of Sound and <ibration 98, 247}256. The maximum

controlled follower force on a free}free beam carrying a concentrated mass.
89. Y. SUGIYAMA, T. KATAYAMA, H. FUKUDA and R. C. KAR 1989 ¹ransactions of the Japan Society

of Mechanical Engineers 55, 243}247. E!ect of internal damping on the stability of free}free
beams under an end-thrust.



848 M. A. LANGTHJEM AND Y. SUGIYAMA
90. K. A. MLADENOV and Y. SUGIYAMA 1997 Journal of Sound and <ibration 199, 1}15. Stability of
a jointed free}free beam under end rocket thrust.

91. K. KANAKA RAJU and G. VENKATESWARA RAO 1994 Journal of Sound and <ibration 178,
429}432. Free vibrations of a free}free partially stressed stepped beam with follower forces.

92. M. A. DE ROSA, K. KANAKU RAJU and G. VENKATESWARA RAO 1995 Journal of Sound and
<ibration 187, 540}542. Comment on &&Free vibrations of a free}free partially stressed stepped
beam'' (with reply).

93. M. A. DE ROSA 1996 Journal of Sound and <ibration 194, 631}635. Free vibrations of stepped
beams with #exible ends, in the presence of follower forces at the step.

94. S. NEMAT-NASSER and G. HERRMANN 1966 Journal of Applied Mechanics 33, 102}104.
Torsional instability of cantilevered bars subjected to nonconservative loading.

95. R. BECKETT and G. JAYARAMAN 1970 Journal of Applied Mechanics 37, 189}190. Instability of
a cantilevered rod subjected to nonconservative forces.

96. G. HERRMANN and S. NEMAT-NASSER 1967 Dynamic Stability of Structures (G. Hermann,
editor), 299}308. Oxford: Pergamon Press. Energy considerations in the analysis of stability of
nonconservative systems.

97. S. NEMAT-NASSER and G. HERRMANN 1966 Ingenieur-Archiv 35, 17}24. On the stability of
equilibrium of continuous systems.

98. T. B. BENJAMIN 1961 Proceedings of the Royal Society (¸ondon), Series A 261, 457}486.
Dynamics of a system of articulated pipes conveying #uid. I. Theory.

99. T. B. BENJAMIN 1961 Proceedings of the Royal Society (¸ondon), Series A 261, 487}499.
Dynamics of a system of articulated pipes conveying #uid. II. Experiments.

100. J. ROORDA and S. NEMAT-NASSER 1967 AIAA Journal 5, 1262}1268. An energy method for
stability analysis of nonlinear, nonconservative systems.

101. M. A. LANGTHJEM and Y. SUGIYAMA 1999 Journal of Fluids and Structures 13, 251}268.
Vibration and stability analysis of cantilevered two-pipe systems conveying di!erent #uids.

102. W. T. FELDT, S. NEMAT-NASSER, S. N. PRASAD and G. HERRMANN 1969 Journal of Applied
Mechanics 36, 693}701. Instability of a mechanical system induced by an impinging #uid jet.

103. Y. SUGIYAMA 1982 SM Archives 7, 433}465. Buckling of a generalized Reut rod.
104. Y. SUGIYAMA, T. KATAYAMA and B.-J. RYU 1992 Proceedings of the Dynamics and Design

Conference 1992, 166}170. ¹okyo: Japan Society of Mechanical Engineers: Vibration and stability
of columns under nonconservative forces realized by an impinging jet.

105. Y. SUGIYAMA 1987 Proceedings of the 24th Annual ¹echnical Meeting, Society of Engineering
Science, (S. L. Koh, editor), 1}7. Society of Engineering Sciences, Inc. Experiments on the
nonconservative problems of elastic stability.

106. Y. SUGIYAMA, S. MATSUMOTO and T. IWATSUBO 1986 ¹ransactions of the Japan Society of
Mechanical Engineers 52, 1058}1065. A theoretical and experimental study on the e!ect of
damping in nonconservative stability problems.

107. J. KIUSALAAS and H. E. DAVIS 1970 International Journal of Solids and Structures 6, 399}409. On
the stability of elastic systems under retarded follower forces.

108. Y. SUGIYAMA, N. FUJIWARA and T. SEKIYA 1968 Proceedings of the 18th Japan National
Congress for Applied Mechanics, 1968, 113}126. Tokyo: University of Tokyo Press: Studies on
nonconservative problems of instability of columns by means of analog computer.

109. Y. SUGIYAMA, T. KATAYAMA, E. KANKI, N. NISHINO and B. As KESSON. 1996 Journal of Fluids
and Structures 10, 653}661. Stabilization of cantilevered #exible structures by means of an
internal #owing #uid.

110. Y. SUGIYAMA 1998 International Conference on ¹heoretical, Applied, Computational and
Experimental Mechanics (IC¹ACEM98), Kharagpur, India, Indian Institute of ¹echnology.
Experimental veri"cation of the e!ect of rocket thrust on the dynamic stability of cantilevered
columns.

111. U. T. RINGERTZ 1994 Structural Optimization 8, 16}23. On structural optimization with
aeroelasticity constraints.

112. M. A. LANGTHJEM 1996 Ph.D. thesis, Department of Solid Mechanics, ¹echnical ;niversity of
Denmark. Dynamics, stability and optimal design of structures with #uid interaction.

113. D. BORGLUND 1998 Journal of Fluids and Structures 12, 353}365. On the optimal design of pipes
conveying #uid.

114. M. A. LANGTHJEM and Y. SUGIYAMA 1999 Journal of Sound and <ibration 226, 1}23. Optimum
shape design against #utter of a cantilevered column with an end-mass of "nite size subjected to
a non-conservative load.



COLUMNS SUBJECTED TO FOLLOWER LOADS 849
115. A. P. SEIRANYAN and A. V. SHARANYUK 1983 Mechanics of Solids. (Mechanika ¹verdogo
¹ela) 18, 174}182. Sensitivity and optimization of critical parameters in dynamic stability
problems.

116. R. H. PLAUT 1972 AIAA Journal 10, 967}968. Determining the nature of instability in
nonconservative problems.

117. J.-L. CLAUDON and M. SUNAKAWA 1981 Optimization of Distributed Parameter Structures, (E. J.
Haug and J. Cea, editors), 1516}1538. Alphen aan den Rijn: Sijtho! and Noordho!. Design
sensitivity analysis for distributed parameter structural systems governed by double eigenvalue
problems.

118. P. PEDERSEN and A. P. SEYRANIAN 1983 International Journal of Solids and Structures 19,
315}335. Sensitivity analysis for problems of dynamic stability.

119. A. P. SEYRANIAN 1993 Mechanics of Structures and Machines 21, 261}284. Sensitivity analysis of
multiple eigenvalues.

120. L.-W. CHEN and D.-M. KU 1992 Journal of Sound and <ibration 153, 403}411. Eigenvalue
sensitivity in the stability analysis of Beck's column with a concentrated mass at the free end.

121. M. S. JANKOVIC, L.-W. CHEN and D.-M. KU 1993 Journal of Sound and <ibration 167, 557}559.
Comments on `Eigenvalue sensitivity in the stability analysis of Beck's column with
a concentrated mass at the free enda (and reply).

122. L.-W. CHEN and D.-M. KU 1994 ASME Journal of <ibrations and Acoustics 116, 168}172.
Stability of nonconservative elastic systems using eigenvalue sensitivity.

123. F. ODEH and I. TADJBAKHSH 1975 Journal of Optimization ¹heory and Application 15, 103}118.
The shape of the strongest column with a follower load.

124. K. VEPA 1973 Journal of Structural Mechanics 2, 229}257. Generalization of an energetic
optimality condition for non-conservative systems.

125. C. SUNDARARAJAN 1975 Journal of Optimization ¹heory and Applications 16, 355}378.
Optimization of a nonconservative elastic system with stability constraints.

126. R. H. PLAUT 1975 Optimization in Structural Design (A. Sawczuk and Z. Mroz, editors), 168}180.
Berlin: Springer-Verlag. Optimal design for stability under dissipative, gyroscopic, or circulatory
loads.

127. J.-L. CLAUDON 1975 Journal de MeH canique 14, 531}543. Characteristic curves and optimum
design of two structures subjected to circulatory loads.

128. H. HANAOKA and K. WASHIZU 1980 Computers and Structures 11, 473}480. Optimum design of
Beck's column.

129. E. F. MASUR and Z. MROZ 1979 International Journal of Solids and Structures 15, 503}512.
Non-stationary optimality conditions in structural design.

130. Y. SEGUCHI, Y. TADA, and K. KEMA 1984 ¹ransactions of the Japan Society of Mechanical
Engineers, Series A 50, 679}686. Shape decision of nonconservative structural systems by the
inverse variable principle.

131. Y. TADA, R. MATSUMOTO and A. OKU 1988 Computer Aided Optimum Design of Structures:
Recent Advances, 13}21. Southampton: Comp. Mech. Publications. Shape determination of
nonconservative structural systems (determination of optimum shape with stable critical load).

132. W. GUTKOWSKI, O. MAHRENHOLTZ and M. PYRZ 1993 Optimization of ¸arge Structural
Systems, (G. I. N. Rozvany, editor), 1087}1100. Dordrecht: Kluwer. Minimum weight design of
structures under nonconservative forces.

133. U. T. RINGERTZ 1994 Structural Optimization 8, 120}124. On the design of Beck's column.
134. R. ISHIDA and Y. SUGIYAMA 1997 ¹ransactions of the Japan Society of Mechanical Engineers 63,

195}200. On the optimal shape of a column subjected to a follower force.
135. R. ISHIDA and Y. SUGIYAMA 1995 AIAA Journal 33, 401}406. Proposal of constructive algorithm

and discrete shape design of the strongest column.
136. M. A. LANGTHJEM and Y. SUGIYAMA 2000 Computers and Structures 74, 385}398. Optimum

design of cantilevered columns under the combined action of conservative and nonconservative
loads. Part I. The undamped case.

137. M. ZYCZKOWSKI and A. GAJEWSKI 1971 Instability of Continuous Systems (H. Leipholz, editor),
295}301. Berlin: Springer-Verlag. Optimal structural design in non-conservative problems of
elastic stability.

138. J.-L. CLAUDON and M. SUNAKAWA 1981 ¹heoretical and Applied Mechanics, <ol. 30
(Proceedings of the 30th Japan National Congress for Applied Mechanics, 1980), 263}272. ¹okyo:
;niversity of ¹okyo Press. A distributed gradient projection method for optimal design of
nonconservative structures.



850 M. A. LANGTHJEM AND Y. SUGIYAMA
139. J.-L. CLAUDON and M. SUNAKAWA 1981 AIAA Journal 19, 957}959. Optimizing distributed
structures for maximum #utter load.

140. Y. SEGUCHI, M. TANAKA, S. KOJIMA and H. TAKAHASHI 1989 ¹ransactions of the Japan Society
of Mechanical Engineers Series A 55, 656}663. Shape determination of a cantilever column
subjected to follower force.

141. M. LANGTHJEM 1994 Structural Optimization 7, 227}236. On the in#uence of damping in an
problem of dynamic stability optimization.

142. A. P. SEIRANYAN 1994 Journal of Applied Mathematics and Mechanics 58, 805}813. Collisions of
eigenvalues in linear oscillatory systems.

143. Y. SUGIYAMA and T. NODA 1981 Bulletin of the Japan Society of Mechanical Engineers
24, 1354}1362. Studies on stability of two-degrees-of-freedom articulated pipes conveying
#uid.

144. M. A. LANGTHJEM and Y. SUGIYAMA 1999 Structural Optimization 18, 228}235. Optimal design
of Beck's column with a constraint on the static buckling load.

145. I. TADJBAKHSH and J. B. KELLER 1962 Journal of Applied Mechanics 29, 159}164. Strongest
columns and isoparametric inequalities for eigenvalues.

146. M. A. LANGTHJEM and Y. SUGIYAMA 2000 Computers and Structures 74, 339}408. Optimum
design of cantilevered columns under the combined action of conservative and nonconservative
loads. Part II: The damped case.

147. G. L. ANDERSON 1974 Journal of Sound and<ibration 33, 155}169. Optimal design of a cantilever
subjected to dissipative and non-conservative forces.

148. C. R. THOMAS 1975 Journal of Sound and <ibration 43, 483}498. Mass optimization of
non-conservative cantilever beams with internal and external damping.

149. C. R. THOMAS 1976 Journal of Sound and <ibration 47, 395}401. Stability and mass optimization
of non-conservative Euler beams with damping.

150. J.-L CLAUDON 1978 Zeitschrift fu( r Angewandte Mathematik und Physik 29, 226}236. Determina-
tion and maximization of the critical load of a Hauger column in the presence of damping.

151. Y. SUGIYAMA, T. IWATSUBO and K. ISHIHARA 1982 Journal of Sound and <ibration 84, 301}303.
Parametric resonances of a cantilevered column under a periodic tangential force.

152. C. S. HSU 1963 Journal of Applied Mechanics 30, 367}372. On the parametric excitation of
a dynamic system having multiple degrees of freedom.

153. T. IWATSUBO, Y. SUGIYAMA and K. ISHIHARA 1972 Journal of Sound and <ibration 23, 245}257.
Stability and non-stationary vibrations of columns under periodic loads.

154. T. IWATSUBO, Y. SUGIYAMA and S. OGINO 1974 Journal of Sound and <ibration 33, 211}221.
Simple and combination resonances of columns under periodic axial loads.

155. J.-H. KIM and Y.-S. CHOO 1998 Journal of Sound and <ibration 216, 623}636. Dynamic stability
of a free}free Timoshenko beam subjected to a pulsating follower force.

156. A. H. NAYFEH 1993 Introduction to Perturbation¹echniques. New York: John Wiley & Sons. Inc.
157. J. J. THOMSEN 1994 Journal of Sound and <ibration 188, 385}405. Chaotic dynamics of the

partially follower-loaded elastic double pendulum.
158. J. J. THOMSEN 1997 <ibrations and Stability, Order and Chaos. London: McGraw-Hill.
159. B. NAGESWARA RAO and G. VENKATESWARA RAO 1987 Journal of Sound and <ibration 120,

197}200. Applicability of the static or dynamic criterion for the stability of a cantilever column
under a tip-concentrated subtangential follower force.

160. B. NAGESWARA RAO and G. VENKATESWARA RAO 1988 Journal of Sound and <ibration 125,
181}184. Stability of a cantilever column under a tip-concentrated subtangential follower force,
with the value of subtangential parameter close to or equal to 1/2.

161. Q. H. ZUO and K. D. HJELMSTAD 1997 Journal of Sound and<ibration 203, 899}902. Conditions
for bifurcation of a cantilever beam subjected to generalized follower loads: geometrically exact
approach.

162. R. W. KOLKKA 1984 International Journal of Non-¸inear Mechanics 19, 497}505. On the
non-linear Beck's problem with external damping.

163. M. CHEN 1987 Nonlinear Analysis ¹heory, Methods and Applications 11, 1061}1073. Hopf
bifurcation in Beck's problem.

164. S. B. ANDERSEN and J. J. THOMSEN 2000 Danish Center for Applied Mathematics and Mechanics,
Report No. 635. Post-critical behavior of Beck's column with a tip mass.

165. A. M. GASPARINI, A. V. SAETTA and R. V. VITALIANI 1995 Computer Methods in Applied
Mechanics and Engineering 124, 63}78. On the stability and instability regions of
non-conservative continuous system under partially follower forces.



COLUMNS SUBJECTED TO FOLLOWER LOADS 851
166. R. V. VITALIANI, A. M. GASPARINI and A. V. SAETTA 1997 International Journal of Solids and
Structures 34, 2497}2516. Finite element solution of the stability problem for nonlinear
undamped and damped systems under nonconservative loading.

167. K. HIGUCHI and E. H. DOWELL 1989 Journal of Sound and<ibration, 129, 255}269. E!ects of the
Poisson ratio and negative thrust on the dynamic stability of a free plate subjected to a follower
force.

168. K. HIGUCHI and E. H. DOWELL 1990 AIAA Journal 28, 1300}1305. Dynamic stability of
a rectangular plate with four free edges subjected to a follower force.

169. J.-H. KIM and J.-H. PARK 1998 Journal of Sound and <ibration 209, 882}888. On the dynamic
stability of rectangular plates subjected to intermediate follower forces.

170. M. N. BISMARCK-NASR 1995 AIAA Journal 33, 355}360. Dynamic stability of shallow shells
subjected to follower forces.

171. J. H. KIM and H. S. KIM 2000 Computers and Structures 74, 351}363. A study on the dynamic
stability of plates under a follower force.

172. M. NISHIWAKI 1993 Proceedings of the Institution of Mechanical Engineers 207, 195}202.
Generalized theory of brake noise.

173. J. E. MOTTERSHEAD and S. N. CHAN 1995 ASME Journal of <ibration and Acoustics 117,
161}163. Flutter instability of circular discs with frictional follower loads.

174. D. LEE and A. M. WAAS 1997 International Journal of Mechanical Sciences 39, 1117}1138.
Stability analysis of a rotating multi-layer annular plate with a stationary frictional follower
load.

175. A. I. NEISHTADT and V. V. SIDORENKO 1997 Journal of Applied Mathematics and Mechanics 61,
15}25. Stability loss delay in a Ziegler system.


	1. INTRODUCTION
	2. BASIC LINEAR DYNAMICS AND STABILITY
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	TABLE 1
	Figure 7
	Figure 8

	3. EXPERIMENTS
	Figure 9
	Figure 10
	Figure 11
	Figure 12

	4. OPTIMUM DESIGN
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5

	5. DYNAMIC STABILITY UNDER A PERIODIC FOLLOWER
	6. NON-LINEAR DYNAMICS
	7. PLATES SUBJECTED TO FOLLOWER FORCES
	8. FINITE LOAD INCREASE
	9. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

